

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA, GEORGIA 30303-8960

MAY 0 9 2011.

EXPRESS MAIL WITH CERTIFIED RETURN RECEIPT REQUESTED

Mr. Rodney S. Bolton Ashland Hercules Water Technologies 5228 North Hopkins Street Milwaukee, Wisconsin 53209

SUBJ: RCRA Case Development Investigation/Evaluation

Hercules, Inc.

EPA ID # MSD008182081

Dear Mr. Bolton:

On September 28-29, 2010, the United States Environmental Protection Agency and the Mississippi Department of Environmental Quality (MDEQ) conducted a Resource Conservation and Recovery Act (RCRA) Case Development Investigation/Evaluation (CDIE) at the Hercules, Inc. facility, located at 613 West 7th Street, in Hattiesburg, Mississippi. This CDIE included sampling conducted by EPA's Science & Ecosystem Support Division (SESD).

Enclosed are the EPA RCRA CDIE Report and the SESD Sampling Report, which indicate that apparent violations of RCRA were discovered. Copies of these reports have also been forwarded to MDEQ. If you have any questions, please contact Randy Jackson of my staff, at (404) 562-8464.

Bill Truman, Acting Chief

South Enforcement and Compliance Section RCRA and OPA Enforcement and Compliance

Branch

Enclosures

cc: Rick Sumrall, MDEQ with enclosures

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

RCRA CASE DEVELOPMENT INVESTIGATION/EVALUATION REPORT

1. <u>INSPECTOR</u>

Randy G. Jackson Environmental Engineer

2. <u>FACILITY INFORMATION</u>

Hercules, Inc. 613 West 7th Street Hattiesburg, MS 39401 EPA ID # MSD008182081

3. RESPONSIBLE OFFICIAL

Charles Jordan Hercules, Inc. Self-Employed Contractor

4. <u>INSPECTION/EVALUATION PARTICIPANTS</u>

Randy G. Jackson, Lead Inspector, USEPA Region 4
Araceli Bonilla, Environmental Engineer, USEPA Region 4
Paula Whiting, Environmental Engineer, USEPA Region 4
Sharon Matthews, Environmental Scientist, USEPA Region 4 SESD
Kevin Simmons, Environmental Scientist, USEPA Region 4 SESD
Art Masters, Environmental Scientist, USEPA Region 4 SESD
Marty Allen, Environmental Scientist, USEPA Region 4 SESD
Bill Simpson, Environmental Scientist, USEPA Region 4 SESD
Jan Patton, Lead Inspector, Mississippi Department of Environmental Quality (MDEQ)
Gloria Tatum, MDEQ
Rick Sumrall, MDEQ
Willie McKercher, MDEQ
Charles Jordan, Self-Employed Contractor, on behalf of Hercules
Kipper Montgomery, ARCADIS Contractor, on behalf of Hercules

5. <u>DATES OF INSPECTION</u>

September 28-29, 2010

6. <u>APPLICABLE STATUTES AND REGULATIONS</u>

Mississippi Hazardous Waste Management Regulations (MHWMR) Parts 260 through 270, 273, and 279.

Resource Conservation and Recovery Act (RCRA), 42 U.S.C. §§ 6901 to 6992k

Title 40, Code of Federal Regulations (C.F.R.) Parts 260 through 270, 273, and 279.

7. **PURPOSE OF INSPECTION**

This inspection was an EPA and MDEQ Case Development Investigation/Evaluation (CDIE) at the Hercules Inc. facility (the "facility" or "Hercules") to determine compliance with the applicable requirements of the State and Federal RCRA statutes and regulations.

MDEQ and EPA Region 4 conducted this inspection to evaluate Hercules' compliance with the MHWMR and the Federal regulations under RCRA. In conjunction with the inspection, EPA Region 4's Science & Ecosystem Support Division (SESD) took samples in the "Sludge Pit Disposal Area" located within an area of the facility referred to as the "Back Forty," where Hercules disposed of sludge from its Wastewater Treatment Impoundment Basin (IB), as well as other process wastes. The complete SESD Sampling Report is contained in Attachment 1 to this Report.

8. FACILITY DESCRIPTION AND BACKGROUND

The Hercules Hattiesburg facility was built in the 1920s and began operations around 1923. Originally, the facility was known as the Hercules Powder Company and manufactured explosives. The facility encompasses approximately 168 acres and is surrounded by both residential and industrial areas, as well as the Roseland Park Cemetery, located to the southeast. In full operation, the facility operated 24 hours a day, seven days a week. The Hercules facility produced and marketed over 250 specialty chemicals used in making a variety of products for home, office, and industrial markets worldwide. Some of the products manufactured during its decades of operation included gunpowder, modified resins, polyamides, Agent Orange, crude tall oil wax emulsions, synthetic rubber, and Delnav, an agricultural pesticide. Processes included wood grinding, shredding extraction, fractionation, refining, distillation, and processing of rosin

from pine tree stumps. In November 2008, Ashland, Inc. (Ashland) completed its acquisition of Hercules, at which time Hercules became a wholly-owned subsidiary of Ashland. Ashland continued manufacturing operations at the facility until November 2009, when manufacturing operations ceased. The last two products produced at the facility were alkyl ketene dimmer (AKD) (July 2009) and Kymene (October/November 2009). AKD is an internal sizing additive and Kymene is a wet-strength resin used in paper products.

A variety of structures and operating units have existed at the facility over the course of its numerous operations. These structures include warehouses, office buildings, tanks, water towers, an industrial wastewater treatment system, rail services, clarifiers, and stacks. Operating units that have existed at the facility include the Wastewater Treatment Impoundment Basin (IB), Drum Recycle Area, a former Pine Tree Stump Pile, Cat Tail Pond (also known as the "Wetlands" or the "Polishing Pond"), the Back Forty, which contains the Sludge Pit Disposal Area (which consists of numerous sludge pits), and the Industrial Landfill Area. These units have been used in a variety of ways depending on the need of the facility at the time. A diagram of the facility layout can be found in Attachment 2 to this Report.

Historically, the IB was operated as a part of the wastewater treatment process. During the operation of the IB, solids would form a sludge that would periodically require removal for the continued operation of the unit. Beginning in the 1970s, sludge would be periodically removed from the IB and placed in the Sludge Pit Disposal Area located in the Back Forty. Additional details regarding the IB and the Sludge Pit Disposal Area are discussed in Sections 10.5 and 10.6, respectively. The Back Forty also provided a disposal location for a variety of other process wastes, as well as boiler ash.

On December 10, 2007, Hercules executed a Notice of Land Use Restrictions in conjunction with a Restrictive Use Agreed Order entered into with MDEQ. This Notice documented that the soil and groundwater at the facility contain benzene, chlorobenzene, carbon tetrachloride, chloroform, 1,2-dichoroethane, and toluene in excess of MDEQ's Target Remediation Goals (TRGs). As a result, the following restrictions were placed on the property:

- 1. There shall be no excavating, drilling or other activities to depths that could create exposure to contaminated media without approval from MDEQ.
- 2. The groundwater at the Site shall not be used, unless otherwise approved by MDEQ.
- 3. Monitoring wells shall be protected and maintained. In the event that a monitoring well is destroyed or damaged or is no longer needed, a plan for repair, reinstallation or abandonment of the well(s) must be submitted to MDEQ for approval.
- 4. No wells shall be installed without prior approval from MDEQ.

On January 11, 2011, MDEQ issued a separate Inspection Report from the September 2010 joint CDIE. This Inspection Report documented minor violations of RCRA, but stated that the violations alleged in MDEQ's November 2008 Notice of Violation (NOV) were still in effect and independent of the violations alleged in the 2011 Report. Specifically, MDEQ's November 2008 NOV alleged the following violations with respect to the IB: (1) treatment, storage, or disposal of hazardous waste without a permit or interim status in violation of MHWMR §§ 270.1(c) and 270.71(a); (2) failure to meet the design requirements of MHWMR 264 and 265 Subpart K for surface impoundments used to treat, store, or dispose of hazardous waste; (3) failure to conduct the required groundwater monitoring under MHWMR 264 and 265 Subpart F; (4) failure to have the required closure and post-closure plans for the surface impoundment in violation of MHWMR §§ 264.1, 264.112, 264.118, 265.1, 265.112, and 265.118; (5) failure to have written cost estimates for closure and post-closure of the impoundment in violation of MHWMR §§ 264.142, 264.144, 265.142, and 265.144; (6) failure to provide financial assurance for closure and post-closure of the impoundment in violation of MHWMR §§ 264.143, 264.145, 265.143, and 265.145; (7) failure to provide liability insurance for the impoundment in violation of MHWMR §§ 264.1, 264.147, 265.1, and 265.147; and (8) disposing of hazardous waste in a surface impoundment in excess of applicable treatment standards under MHWMR § 268.40.for such surface impoundments.

9. Findings

The joint EPA and MDEQ inspection began at approximately 8:10 a.m. C.D.T. on September 28, 2010. Credentials were presented to Mr. Jordan, who is Hercules' authorized representative, and the purpose of the inspection and sampling efforts were described. The findings are as follows, and all pictures referenced below can be found in Attachment 3.

9.1. QA/QC Lab Area

The QA/QC lab had a Hazardous Waste Satellite Accumulation Area (HWSAA) outside the laboratory building (see Attachment 2 for facility layout). A white 55-gallon drum of acetone was stored inside a clam-shell container and was observed to be labeled and closed (Pictures 13 and 14 in Attachment 3). Inside the lab, the inspectors observed two bottles labeled sulfuric acid (H₂SO₄) disposed of in a garbage bin marked non-hazardous waste (Picture 15 in Attachment 3). Outside the entrance to the lab, compressed gas cylinders were observed upright and chained to the wall (Picture 16 in Attachment 3).

As such, Hercules, appears to have failed to properly make a hazardous waste determination as required by MHWMR 262 (40 C.F.R. § 262.11), which states that a person who generates a solid waste must determine if that waste is a hazardous waste using appropriate methods.

9.2. <u>Hazardous Waste Storage</u>

The inspectors noted a pallet of containers of "Tie Renewal" (material used on railroad ties) in an outdoor covered storage area beside Warehouse #8 (see Attachment 2 for facility layout). This material was stored pending collection for reuse.

A second HWSAA was observed outside near the former Kymene production area (see Attachment 2 for facility layout). This HWSAA was composed of a clam-shell container with a 55-gallon drum used to dispose of waste aerosols (D001). The drum was labeled but was not closed properly (Pictures 29 and 30 in Attachment 3).

As such, Hercules, appears to have failed to adhere to a condition for exemption from Section 3005 of RCRA, 42 U.S.C. § 6925, given in MHWMR 262 (40 C.F.R. § 262.34(c)(1)(i)), which states that a generator may accumulate as much as 55 gallons of hazardous waste in containers at or near the point of generation where wastes initially accumulate, which is under the control of the operator of the process generating the waste, without a permit or interim status and without complying with 40 C.F.R. § 262.34(a), provided that he complies with 40 C.F.R. §§ 265.171, 265.172, and 265.173(a). MHWMR 265 (40 C.F.R. § 265.173(a)) requires that a generator of hazardous waste manage its hazardous waste in containers that are closed when hazardous waste is not being added or removed.

9.3. Universal Waste

Universal waste was stored in Warehouse #2/3 (see Attachment 2 for facility layout) in two containers. One container was labeled and an accumulation start date was observed on the container. The other container held used fluorescent lamps without a label or an accumulation start date. There was evidence of broken lamps in a garbage bin and on the ground (Pictures 17 and 18 in Attachment 3).

As such, Hercules, appears to be violation of MHWMR 273 (40 C.F.R. § 273.13(d)(1)), which requires that small quantity handlers of universal waste must contain universal waste lamps in containers and packages that are structurally sound, adequate to prevent breakage, and compatible with the contents of the lamps. Such containers and packages of lamps must remain closed and must lack evidence of leakage, spillage, or damage that could cause leakage under reasonably foreseeable conditions.

As such, Hercules, appears to be in violation of MHWMR 273 (40 C.F.R. § 273.14(e)), which requires that universal waste lamps, or containers or packages in which such lamps are contained, must be labeled or marked clearly with any one of the following phrases: "Universal Waste-Lamp(s)," or "Waste Lamp(s)," or "Used Lamp(s)."

In addition, Hercules, appears to be in violation of MHWMR 273 (40 C.F.R. § 273.15(c)), which requires that small quantity handlers of universal waste who accumulate universal waste must be able to demonstrate the length of time that the universal waste has been accumulated from the date it becomes a waste or is received. The handler may make this demonstration by placing the universal waste in a container and marking or labeling the container with the earliest date that any universal waste in the container became a waste or was received.

9.4. Used Oil

Used oil was found in Warehouse #8 (see Attachment 2 for facility layout). It was properly contained on a spill containment pallet in six 5-gallon buckets labeled "Used Oil." Three 55-gallon drums labeled "Regenerated Catalyst" were also observed in the covered storage area outside of Warehouse #8. Upon closer inspection of the drums, it was noted that the drums contained used oil and not "Regenerated Catalyst" (Pictures 21, 22, and 23 in Attachment 3).

As such, Hercules appears to be in violation of MHWMR 279 (40 C.F.R. § 279.22(c)(1)), which requires that containers and aboveground tanks used to store used oil at generator facilities must be labeled or marked clearly with the words "Used Oil."

9.5. Wastewater Treatment Impoundment Basin

The IB, which encompasses approximately 17,500 square feet, is located on the eastern portion of the facility near the Cat Tail Pond and Providence Street. During the operation of the IB, solids would form a sludge that would be periodically removed and disposed of in the Sludge Pit Disposal Area within the Back Forty. Wastewater sludge sampling within the IB was performed by Eco-Systems, Inc. for Hercules in July and September 2008 to determine whether benzene concentrations within the IB sludge exceeded the Toxicity Characteristic Leaching Procedure (TCLP) limit (0.5 mg/L). Results from the September 4, 2008, sampling event revealed three samples which exceeded the TCLP limit for benzene (SS-5, SS-6, and SS-8), showing that the IB contained characteristically hazardous waste. The IB is a "surface impoundment" as defined in MHWMR 260 (40 C.F.R. § 260.10). The IB has no liner or leachate collection system in place. The IB was not RCRA closed when the facility ceased manufacturing operations in November of 2009 (Picture 24 in Attachment 3), nor did the facility obtain a permit or interim status for operation of a hazardous waste Treatment, Storage or Disposal (TSD) facility.

As such, Hercules appears to be in violation of Section 3005 of RCRA, 42 U.S.C. § 6925, for operating a hazardous waste TSD facility without a permit or interim status, and is therefore subject to the applicable requirements of MHWMR 260 to 270 (40 C.F.R. Parts 260 to 270), including, but not limited to:

- MHWMR 264 (40 C.F.R. § 264.31) for failure to maintain and operate the facility to minimize the possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the environment; and
- MHWMR 268 (40 C.F.R. Part 268), including Sections 268.7, 268.9, and 268.40(a), for disposing of hazardous waste into a surface impoundment without determining the applicable treatment standards; disposal before the treatment standards were met; and failure to comply with other notice, certification, and waste analysis requirements in these sections.

9.6. Sludge Pit Disposal Area

The Sludge Pit Disposal Area is located in the Back Forty on the northwestern portion of the facility near North Main Street, and consists of unlined disposal areas. According to a 1978 Congressional Survey, the utilization of this area began in 1923, and it continued to be used for disposal purposes until approximately 2002. These disposal areas received waste generated from "removal campaigns" conducted within the IB. According to MDEQ, this area contains approximately 14,416 cubic meters of waste. The sludge pits within the Sludge Pit Disposal Area meet the definition of both "surface impoundment" and/or "landfill" as defined in MHWMR 260 (40 C.F.R. § 260.10).

On September 28-29, 2010, EPA, SESD, and MDEQ inspected the Sludge Pit Disposal Area and SESD conducted sampling activities within the area. SESD collected thirteen samples to determine the levels of metals, volatile organic compounds (VOCs), including benzene, and semi-volatile organic compounds (SVOCs) (Pictures 1-12 in Attachment 3). Borings were completed using Geoprobe® direct-push technology or hand auger in the Sludge Pit Disposal Area. Two samples had been proposed from the Cat Tail Pond, but only one could be collected due to the high quantity of vegetative material. Samples from the Sludge Pit Disposal Area were collected based on visual observations and screening results obtained with the Thermo Toxic Vapor Analyzer (TVA) 100B. All samples were analyzed for VOCs, SVOCs, metals, and TCLP. Six of the samples failed TCLP for benzene. Sampling results and locations of the samples are included in the SESD Report provided as Attachment 1 to this Report.

As such, Hercules, appears to have failed to properly make an adequate hazardous waste determination as required by MHWMR 262 (40 C.F.R. § 262.11), which states that a person who generates a solid waste must determine if that waste is a hazardous waste using appropriate methods.

As such, Hercules appears to be in violation of Section 3005 of RCRA, 42 U.S.C. § 6925, for operating a hazardous waste TSD facility without a permit or interim status, and is therefore subject to the applicable requirements of MHWMR 260 to 270 (40 C.F.R. Parts 260 to 270), including, but not limited to:

- MHWMR 264 (40 C.F.R. § 264.31) for failure to maintain and operate the facility to minimize the possibility of a fire, explosion, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the environment; and
- MHWMR 268 (40 C.F.R. Part 268), including Sections 268.7, 268.9, and 268.40(a), for disposing of hazardous waste into a surface impoundment or landfill without determining the applicable treatment standards; disposal before the treatment standards were met; and failure to comply with other notice, certification, and waste analysis requirements in these sections.

11	l .	SIGNED

Lady Blacken	5-9-11
Randy G. Ockson	Date
Environmental Engineer	

12. CONCURRENCE

> Bill Truman, Acting Chief South Enforcement and Compliance Section

RCRA and OPA Enforcement and Compliance Branch

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 4

Science and Ecosystem Support Division **Enforcement and Investigations Branch** 980 College Station Road Athens, Georgia 30605-2720

4SESD-EIB

January 31, 2011

MEMORANDUM

SESD Final Field Investigation Report for **SUBJECT:**

Hercules Inc., Hattiesburg, Mississippi

EPA ID No. MSD 008 182 081; SESD Project No. 10-0629

FROM:

Sharon Matthews, PG Enforcement Section

THRU:

Laura Ackerman, Chief

Enforcement Section

TO:

Larry Lamberth, Chief

South Enforcement and Compliance Section

RCRA & OPA Enforcement and Compliance Branch

RCRA Division

Attached is the final Field Investigation Report for the sampling conducted at Hercules Inc. in Hattiesburg, Mississippi on September 28-29, 2010. If you have any questions, please contact me at matthews.sharon@epa.gov. or at (706) 355-8608.

Attachment

Randy Jackson, RCRA w/attachment Willie McKercher, MDEQ w/attachment Jan Patton, MDEQ w/ attachment

United States Environmental Protection Agency Region 4

Science and Ecosystem Support Division 980 College Station Road Athens, Georgia 30605-2720

Field Investigation Report Hercules Inc.

Hattiesburg, Mississippi

Date of Final Report: January 31, 2011 **SESD Project Identification Number: 10-0629**

Requestor: Randy Jackson South Enforcement & Compliance Section SESD Enforcement Section RCRA & OPA ECB, RCRA Division 61 Forsyth Street, SW Atlanta, GA 30303-8960

SESD Project Leader: Sharon Matthews 980 College Station Road Athens, Georgia 30605-2720

Title and Approval Sheet

Title: Hercules Inc.

Field Investigation Report

Approving Official:

Laura Ackerman, Section Chief

Enforcement Section

Enforcement and Investigations Branch

SESD Project Leader:

Sharon Matthews, PG

Enforcement Section

Enforcement and Investigations Branch

FIELD INVESTIGATION REPORT Hercules Inc., Hattiesburg, Mississippi SESD Project Identification Number: 10-0629

I. INTRODUCTION

On September 28-29, 2010, representatives of the Science and Ecosystem Support Division (SESD) conducted a sampling investigation at the Hercules Inc. facility in Hattiesburg, Mississippi. This field investigation was requested by the EPA South Enforcement & Compliance Section, RCRA Division and the Mississippi Department of Environmental Quality (MDEQ) as part of the EPA Surface Impoundment Initiative.

In April 2008, Hercules Inc. informed the MDEQ that an onsite impoundment basin was to be closed. MDEQ requested additional information on closure operations including a request for Hercules to characterize the sludge. After three sampling events, the results indicated some areas of the sludge exhibited hazardous characteristics for benzene. A notice of violation (NOV) was issued in November 2008 to the facility.

MDEQ contacted the EPA to see if they would conduct sampling and analysis of the sludge disposal area from prior surface impoundment clean-outs to determine if illegal disposal had occurred. The sludge disposal area is located on the 'back forty' of the facility's 170 acres, and spans an area of 6 to 7 acres.

Personnel that participated in the investigation included:

		(10.1) 500 0161
Randy Jackson	EPA Region 4-Atlanta, GA	(404) 562-8464
Paula Whiting	EPA Region 4-Atlanta, GA	(404) 562-9277
Araceli Bonilla	EPA Region 4-Atlanta, GA	(404) 562-9790
Jan Patton	MDEQ – Jackson, MS	(601) 961-5782
Willie McKercher	MDEQ – Jackson, MS	(601) 961-5731
Gloria Tatum	MDEQ – Jackson, MS	(601) 961-5011
Rick Sumrall	MDEQ – Jackson, MS	(601) 961-5791
Charles Jordan	Hercules- Hattiesburg, MS	(601) 584-3360
Kipper Montgomery	Arcadis – Baton Rouge, LA	(225) 292-1004
Kevin Simmons	EPA Region 4-Athens, GA	(706) 355-8730
Art Masters	EPA Region 4-Athens, GA	(706) 355-8612
Bill Simpson	EPA Region 4- Athens, GA	(706) 355-8748
Marty Allen	EPA Region 4-Athens, GA	(706) 355-8651
Sharon Matthews	EPA Region 4-Athens, GA	(706) 355-8608

II. SUMMARY

SESD collected a total of thirteen subsurface waste samples, twelve from the "back forty" area and one from the "wetlands" area. Samples were analyzed for volatile organic compounds (VOCs), semi volatile organic compounds (SVOCs), metals and TCLP. MDEQ and EPA requested the analytical data be compared to residential levels for soil given in the Tier 1 Target Remediation Goals (TRGs) and the most recent USEPA Regional Screening levels (RSLs).

Eighteen volatile organic compounds were detected in the thirteen samples. Benzene failed the TCLP regulatory limit of 0.5 mg/L in six of the samples and was detected in ten samples. Toluene and p-isopropyltoluene were detected in all thirteen samples. Methylcyclohexane and 1, 2, 4-trimethylbenzene were detected in eleven samples and. Cyclohexane was detected in nine samples and ethyl benzene was detected in eight samples. The remainder of the VOCs were detected in six or less of the samples.

Forty SVOCs were detected in the thirteen samples. None of the SVOCs failed TCLP for the thirteen samples. The compound 1, 1-biphenyl was detected in twelve of the thirteen samples and petroleum product was detected in eleven of the samples. Phenol, hexahydrotetramethylmethanonaphthalene (TIC) and dimethylisopropylphenanthrene (TIC) were detected in ten of the samples. Nine samples contained camphene, 2-methylnaphthalene, and naphthalene. Eight of the samples contained diphenyl ether (TIC), (3-and/or 4) methylphenol, methyl (methylethyl) benzene (TIC), methyl (methylethyl)cyclohexane (TIC), and trimethylbicycloheptane (TIC). Seven of the samples contained 2-methylphenol, fluoranthene and pinene (TIC). The remainder of the SVOCs were detected in six or less of the samples.

Twenty-two metals were detected in the thirteen samples with seventeen detected in all of the samples. Arsenic was detected in samples HERC04-B, HERC05-A, HERC10-B and HERC13-B at levels that exceeded both the MDEQ and EPA regulatory levels with values ranging from 5.0 to 6.4 mg/kg. None of the samples exceeded the MDEQ and EPA regulatory levels for Chromium III; however, all of the samples exceeded the EPA regulatory level of 0.29 mg/kg for Chromium VI. Vanadium was detected in samples HERC03-B, HERC04-B, HERC05-A, HERC08, HERC09-B, HERC10-B, HERC11-B, HERC12-B and HERC13-B at levels that exceeded the EPA regulatory level of 5.5 mg/kg with values ranging from 5.6 to 18 mg/kg. No other metal concentrations exceeded the MDEQ and EPA regulatory levels. None of the metals failed TCLP for the thirteen samples.

III. SITE BACKGROUND

The facility is located at 613 West Seventh Street in Hattiesburg, Mississippi (Figure 1). Facility operations, which began in 1923, included wood grinding, shredding extraction, fractionation, refining, distillation and processing of rosin from pine tree stumps. Some of the products that were manufactured included modified resins, polyamides, ketene dimmer, crude tall oil wax emulsions, synthetic rubber and the agricultural pesticide Delnav. Hercules also manufactured specialty organic chemicals for use in paper products. Over 250 products were produced at the facility. Hercules downsized the Hattiesburg operations and has now ceased operations.

A state preliminary assessment was completed in December 1989 and indicated two source areas which included about 38 acres of contaminated soil and almost 900,000 cubic feet of surface impoundments. The contaminated soil contained cadmium, cobalt, lead, mercury, toluene, MEK, benzene, PCBs and acetone. Contaminants present in the surface impoundments included arsenic, heavy metals, toluene, MEK and benzene.

In April 2008 the facility sent a letter to MDEQ to close an onsite impoundment basin. MDEQ requested additional information on closure operations including a request for Hercules to characterize the sludge. After three sampling events, the results indicated some areas of the

sludge exhibited hazardous characteristics for benzene. A notice of violation (NOV) was issued November 2008. Prior surface impoundment clean-outs had been taken to a landfill disposal area located on the 'back forty" of the facility's 170 acres, spanning an area of 6 to 7 acres. According to information from MDEQ, the "back forty" had been used to dispose of process wastes, boiler ash and waste treatment sludge from plant activities. A compliance evaluation inspection conducted by MDEQ in March 2009 resulted in several violations involving the surface impoundment and closure/post-closure procedures. MDEQ then requested EPA's assistance in sampling and testing the sludge disposal area to determine if illegal disposal had occurred.

IV. DISSCUSSION OF FIELD ACTIVITIES

SESD personnel arrived at the site Tuesday, September 28, 2010 at around 7:45 am and met with EPA-Atlanta, MDEQ and facility personnel to assess the proposed sampling areas. Using an authoritative sampling design, sampling locations were determined in the field by MDEQ and EPA personnel based on access and prior knowledge of the site. Twelve borings were completed using Geoprobe direct-push technology or hand auger in the 'back forty' disposal area. Total depth of the sludge had been estimated to be around 14 to 16 feet below land surface but was actually closer to 5 to 8 feet in depth. Two samples had been proposed from the wetlands, but only one could be collected due to the high quantity of vegetative material/roots. Two samples had been proposed from the impoundment outfall, but those sample locations were deleted and added to the samples to be collected from the "back forty". Samples from the sludge disposal area were collected based on visual observations and screening results obtained with the Thermo Toxic Vapor Analyzer (TVA) 1000B. All samples were analyzed for VOCs, SVOCs, metals and TCLP. Table 1 gives information on the waste samples. Sampling locations are shown on Figures 3, 4 and 5. Photographs taken during the investigation are included in Appendix A.

Waste Samples

Under the direction of EPA-Atlanta and MDEQ personnel, sample **HERC01-A** was collected from the "back forty" using Geoprobe direct-push equipment to a depth of 0 to 4 feet below land surface (BLS). The core was screened with a Thermo Toxic Vapor Analyzer (TVA) 1000B. The sample was described as a black organic rich material with a strong odor of pine. The waste sample core was placed in a glass pan and using a stainless steel spoon, three 8-ounce glass containers were filled for the VOC, SVOC and total metals analyses. The VOC sample was collected first, and then the remainder of the sample was homogenized in the glass pan. The facility elected to split with EPA for all samples and supplied one 4-ounce amber glass container for VOCs, one 16-ounce glass container for SVOCs and one 8-ounce plastic container for metals.

For sample **HERC02-B**, a stainless steel hand auger was used to auger to 5 feet BLS. The waste sample was collected from 3.5 to 5 feet BLS and was described as a tan to black sticky material. EPA and facility containers were filled for the VOC, SVOC and total metals analyses using the same procedure described above.

Sample **HERC03-B** was also collected with a stainless steel hand auger from some of the oldest part of the "back forty" sludge disposal area. The waste sample was collected from 4 to 5 feet BLS and was described as a black organic material with a strong odor, sandier at depth. Native material of sand and gravel was noted at about 6 feet BLS. EPA and facility containers were filled for the same analyses using the same procedure described above.

Sample **HERC04-B** was collected with a stainless steel hand auger from the older part of the "back forty" sludge disposal area. The waste sample was collected from 6 to 7 feet BLS and was described as a black organic material with some odor. EPA and facility containers were filled for the same analyses using the same procedure described previously.

Sample **HERC05-A** was collected with a stainless steel hand auger from the older part of the "back forty" sludge disposal area. The waste sample was collected from 5.5 to 6.5 feet BLS and was described as a dark organic sludge with a strong odor. EPA and facility containers were filled for the same analyses using the same procedure described before.

Sample **HERC06-B** was collected with a stainless steel hand auger from 4.5 to 5.5 feet BLS and was described as a dark gray to black sludge with a strong odor, drier material at the surface that became moister and sandier with depth. The sand that was encountered at 5.5 to 6 feet BLS is the sand layer that sits on top of the Hattiesburg clay in this area, indicating native material. EPA and facility containers were filled for the same analyses using the same procedure described previously.

Sample **HERC07-B** was collected with a stainless steel hand auger from 5.5 to 6 feet BLS and was described as a drier dark organic material which became moister with depth. EPA and facility containers were filled for the same analyses using the same procedure described before.

Sample **HERC08** was collected with a stainless steel scoop from the "wetlands" area from a depth of about 3 to 4 inches. The material was mostly cat-tails and detritus with some stratified sludgy material with no odor. Two samples had been proposed from the wetlands, one around the influent and one from the effluent, but only the influent sample could be collected due to the high amount of vegetative material/roots around the effluent area. EPA and facility containers were filled for the same analyses using the same procedure described previously.

Sample **HERC09-B** was collected from the "back forty" using Geoprobe direct-push equipment. The first core was 0 to 4 feet BLS and was a black organic material. The second core was collected from 4 to 8 feet BLS and was black sludge for the first foot, then native sand. Because the core was compacting inside the core barrel, it was decided to hand auger this and subsequent samples to collect enough material to fill all the EPA and facility sample containers. The sample was collected from 5 to 6 feet BLS and described as a black sludge material. EPA and facility containers were filled for the same analyses using the same procedure described before.

Sample **HERC10-B** was collected with a stainless steel hand auger from 5 to 6 feet BLS. Native sand was encountered at 6 feet BLS. The black sludge sample was collected above the sand and some odor was noted during sampling. EPA and facility containers were filled for the same analyses using the same procedure described previously.

Sample **HERC11-B** was collected with a stainless steel hand auger from 5 to 6 feet BLS. Native sand was encountered at 6 feet BLS. The sample was collected above the sand and was described as a black organic sludge with some odor. EPA and facility containers were filled for the same analyses using the same procedure described before.

Sample **HERC12-B** was collected with a stainless steel hand auger from 4.5 to 5.5 feet BLS. Native sand was encountered at 5.5 feet BLS. The sample was collected above the sand and was described as a black sludge with some odor. EPA and facility containers were filled for the same analyses using the same procedure described previously.

Sample **HERC13-B** was collected with a stainless steel hand auger from 4.5 to 5.5 feet BLS. Native sand was encountered at 5.5 feet BLS. The sample was collected above the sand and was described as a black sludge material with a strong odor and an oily sheen. EPA and facility containers were filled for the same analyses using the same procedure described before.

V. RESULTS OF ANALYSES

Samples were analyzed for VOCs by SW-846 Methods 8260C, for SVOCs by SW-846 Method 8270D and for total metals by SW-846 Method 6010. Analytical results for the VOC-detected analytes in the waste samples are given in Table 2 and the TCLP results are given in Table 3. The MDEQ Tier 1 TRG and EPA Regional Screening Levels (RSLs) for VOCs in residential soils are listed in Table 4. Results for the SVOC-detected analytes are given in Table 5. Because no compounds failed TCLP for SVOCs, there is no TCLP table. The MDEQ Tier 1 TRG and EPA RSLs for SVOCs in residential soils are listed in Table 6. Analytical results for total metals are given in Table 7 and the MDEQ Tier 1 TRG and EPA RSLs for metals are given in Table 8. Because no compounds failed TCLP for metals, there is no TCLP table. The complete set of results generated by the SESD laboratory is included as Appendix B. The following analytes were detected in samples collected at the facility:

Volatile Organic Compounds- (Tables 2, 3 and 4)

Eighteen volatile compounds were detected in the thirteen samples (**Table 2**). Toluene and p-isopropyltoluene were detected in all thirteen samples. Methylcyclohexane and 1,2,4-trimethylbenzene were detected in eleven samples and benzene was detected in ten samples. Cyclohexane was detected in nine samples and ethyl benzene was detected in eight samples. The remaining VOCs were detected in six or less of the samples. Benzene failed the TCLP regulatory limit of 0.5 mg/L in six of the samples (**Table 3**). Analytical data was compared to the MDEQ and EPA regulatory levels referenced in **Table 4**. Exceedences are listed below:

<u>HERC01-A</u> - Analytes exceeding the reference standard or level: benzene (18 mg/kg), toluene (7100 mg/kg)

<u>HERC02-B</u> - *Analytes exceeding the reference standard or level*: benzene (37 mg/kg), ethyl benzene (6.5 J, O mg/kg), toluene (16000 mg/kg)

HERC03-B - Analytes exceeding the reference standard or level: benzene (3.4 mg/kg)

<u>HERC04-B</u> - *Analytes exceeding the reference standard or level*: benzene (19 mg/kg), toluene (3000 mg/kg)

<u>HERC05-A</u> - *Analytes exceeding the reference standard or level*: benzene (14 mg/kg), toluene (5300 mg/kg)

HERC06-B - Analytes exceeding the reference standard or level: toluene (280 mg/kg)

HERC07-B - Analytes exceeding the reference standard or level: toluene (1400 mg/kg)

HERC08 - Analytes exceeding the reference standard or level: none

<u>HERC09-B</u> - *Analytes exceeding the reference standard or level*: benzene (170 mg/kg), toluene (1100 mg/kg)

<u>HERC10-B</u> - *Analytes exceeding the reference standard or level*: benzene (140 mg/kg), toluene (3100 mg/kg)

<u>HERC11-B</u> - *Analytes exceeding the reference standard or level*: benzene (77 mg/kg), toluene (2600 mg/kg)

<u>HERC12-B</u> - *Analytes exceeding the reference standard or level*: benzene (440 mg/kg), isopropylbenzene (47 mg/kg), toluene (160 mg/kg)

<u>HERC13-B</u> - *Analytes exceeding the reference standard or level*: benzene (390 mg/kg), toluene (3400 mg/kg)

Semi Volatile Organic Compounds (Tables 5 and 6)

Forty SVOCs were detected in the thirteen samples (**Table 5**). The compound 1,1-biphenyl was detected in twelve of the thirteen samples and petroleum product was detected in eleven of the samples. Phenol, dimethylisopropylphenanthrene (TIC), and hexahydrotetramethylmethanonaphthalene (TIC) were detected in ten of the samples. Nine samples contained 2-methylnaphthalene, camphene and naphthalene. Eight of the samples contained diphenyl ether (TIC), (3-and/or 4) methylphenol, methyl(methylethyl)benzene (TIC), methyl(methylethyl)cyclohexane (TIC), and trimethylbicycloheptane (TIC). Seven of the samples contained 2-methylphenol, fluoranthene and pinene (TIC). The remainder of the SVOCs were detected in six or less of the samples. None of the SVOCs failed TCLP for the thirteen samples. Analytical data was compared to the MDEQ and EPA regulatory levels referenced in **Table 6**. Exceedences are listed below:

HERC01-A - Analytes exceeding the reference standard or level: naphthalene (6.2 mg/kg)

 $\underline{\rm HERC02-B}$ - Analytes exceeding the reference standard or level: 1,1-biphenyl (3900 mg/kg), naphthalene (8.8 mg/kg)

HERC03-B - Analytes exceeding the reference standard or level: none

<u>HERC04-B</u> - Analytes exceeding the reference standard or level: naphthalene (7.8 mg/kg)

HERC05-A - Analytes exceeding the reference standard or level: naphthalene (8.7 mg/kg)

HERC06-B - Analytes exceeding the reference standard or level: none

HERC07-B - Analytes exceeding the reference standard or level: none

<u>HERC08 - Analytes exceeding the reference standard or level: none</u>

HERC09-B - Analytes exceeding the reference standard or level: none

HERC10-B - Analytes exceeding the reference standard or level: naphthalene (6.7 mg/kg)

HERC11-B - Analytes exceeding the reference standard or level: none

HERC12-B - Analytes exceeding the reference standard or level: naphthalene (3.9 mg/kg)

HERC13-B - Analytes exceeding the reference standard or level: naphthalene (5.2 mg/kg)

Metals (Tables 7 and 8)

Twenty-two metals were detected in the thirteen samples (**Table 7**). Seventeen of the metals were detected in all of the samples. Arsenic was detected in samples HERC04-B, HERC05-A, HERC10B and HERC13-B at levels that exceeded both the MDEQ and EPA regulatory levels with values ranging from 5.0 to 6.4 mg/kg. None of the samples exceeded the MDEQ and EPA regulatory levels for Chromium III; however, all of the samples exceeded the EPA regulatory level of 0.29 mg/kg for Chromium VI with values ranging from 7.7 to 45 mg/kg. Vanadium was detected in samples HERC03-B, HERC04-B, HERC05-A, HERC08, HERC09-B, HERC10-B, HERC11-B, HERC12-B and HERC13-B at levels that exceeded the EPA regulatory level of 5.5 mg/kg with values ranging from 5.6 to 18 mg/kg. No other metal concentrations exceeded the MDEQ and EPA regulatory levels. None of the metals failed TCLP for the thirteen samples. Analytical data was compared to the MDEQ and EPA regulatory levels referenced in **Table 8.** Exceedences are listed below:

<u>HERC01-A</u> - Analytes exceeding the reference standard or level: chromium VI (24 mg/kg)

HERC02-B - Analytes exceeding the reference standard or level: chromium VI (11 mg/kg)

<u>HERC03-B</u> - *Analytes exceeding the reference standard or level*: chromium VI (7.7mg/kg), vanadium (8.7 mg/kg)

<u>HERC04-B</u> - *Analytes exceeding the reference standard or level*: arsenic (6.4 mg/kg), chromium VI (29 mg/kg), vanadium (5.6 mg/kg)

<u>HERC05-A</u> - *Analytes exceeding the reference standard or level*: arsenic (5.6 mg/kg), chromium VI (45 mg/kg), vanadium (6.6 mg/kg)

HERC06-B - Analytes exceeding the reference standard or level: chromium VI (20 J,O mg/kg)

HERC07-B - Analytes exceeding the reference standard or level: chromium VI (32 mg/kg)

<u>HERC08 - Analytes exceeding the reference standard or level</u>: chromium VI (20 mg/kg), vanadium (18 mg/kg)

<u>HERC09-B</u> - Analytes exceeding the reference standard or level: chromium VI (20 mg/kg), vanadium (5.9 mg/kg)

<u>HERC10-B</u> - Analytes exceeding the reference standard or level: arsenic (5.0 mg/kg), chromium VI (26 mg/kg), vanadium (7.6 mg/kg)

<u>HERC11-B</u> - *Analytes exceeding the reference standard or level*: chromium VI (25 mg/kg), vanadium (7.2 mg/kg)

<u>HERC12-B</u> - *Analytes exceeding the reference standard or level*: chromium VI (18 mg/kg), vanadium (7.5 mg/kg)

<u>HERC13-B</u> - *Analytes exceeding the reference standard or level*: arsenic (5.6 mg/kg), chromium VI (36 mg/kg), vanadium (9.0 mg/kg)

VI. RESULTS OF FIELD QUALITY CONTROL SAMPLES

Field quality control samples for this investigation consisted of equipment rinse blanks collected from the liners used for the Geoprobe cores. No VOCs, SVOCs or metals were detected in the blanks. No metals were detected in the blank of the preservative used for the equipment rinse blank for metals analysis.

VII. METHODOLOGY

Field activities were conducted in accordance with the Region 4 SESD *Field Branches Quality System and Technical Procedures*. Specific field procedures applicable to this investigation included the following:

Soil Sampling, SESDPROC-300-R1 Waste Sampling SESDPROC-302-R1

Sediment Sampling, SESDPROC-200-R2
SESD Operating Procedure for Sample and Evidence Management, SESDPROC-005-R1
Global Positioning System, SESDPROC-110-R2
Management of Investigation Derived Waste, SESDPROC-202-R1
Field Equipment Cleaning and Decontamination, SESDPROC-205-R1
Packing, Marking, Labeling and Shipping of Environmental & Waste Samples,
SESDPROC-209-R1

Field quality control measures were in accordance with the SESD Operating Procedure for Field Sampling Quality Control, SESDPROC-011-R2, and 40 CFR Part 136, Table II-Required Containers, Preservations Techniques, and Holding Times, Revised as of July 1, 2007. All field measurement instruments and equipment were maintained in accordance with the SESD Operating Procedure for Equipment Inventory and Management, SESDPROC-108-R3.

Samples were analyzed at the SESD laboratory in accordance with the SESD Analytical Support Branch Laboratory Operations and Quality Assurance Manual, January 2010. The laboratory is accredited by the national Environmental Laboratory Accreditation Program (NELAP).

REFERENCES

Personnel communication: Kevin Koporec to Sharon Matthews regarding RSLs, 1/19/11

"Site Inspection" for Hercules Inc. prepared by B&V Waste Science and Technology Corp. for the US EPA Region 4. April, 1993.

USEPA Regional Screening Levels (11/10)

Mississippi Department of Environmental Quality Tier 1 TRG Table (2/28/02)

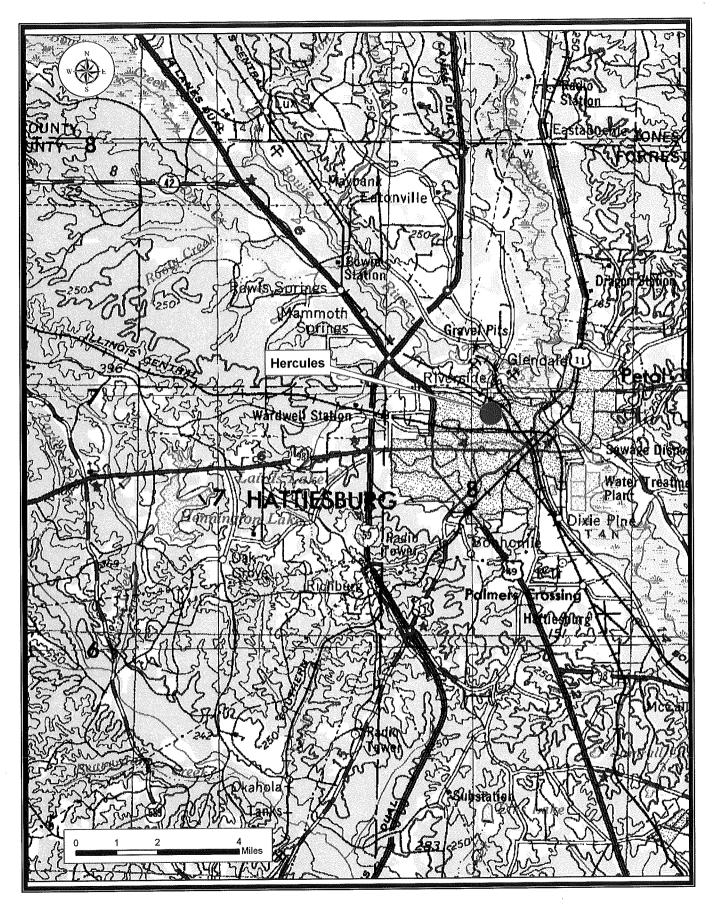


FIGURE 1 – FACILITY LOCATION MAP HERCULES, INC. HATTIESBURG, MISSISSIPPI

FIGURE 2 –SITE LOCATION MAP HERCULES, INC., HATTIESBURG, MISSISSIPPI

FIGURE 3 – SAMPLE LOCATIONS HERCULES, INC., HATTIESBURG, MISSISSIPPI

FIGURE 4 – "BACK 40" SAMPLE LOCATIONS – Expanded view HERCULES, INC., HATTIESBURG, MISSISSIPPI

FIGURE 5 – "WETLANDS" SAMPLE LOCATION – Expanded view HERCULES, INC., HATTIESBURG, MISSISSIPPI

Page 17 of 42

TABLE 1 SAMPLE DESCRIPTIONS HERCULES INC. – HATTIESBURG, MISSISSIPPI

Station ID	Sample ID	Media Code	Sample Date	Latitude	Longitude	Sample Description	Sample Interval (BLS)/ Sample Method
HERC01	HERC01-A	WA	9/28/10	31.34350	89.31332 ±10'	Black organic rich material; very strong odor; pine smell	0 to 4 feet - Geoprobe
HERC02	HERC02-B	WA	9/28/10	31.34344	89.31308 ±13'	Tan to black sticky material	3.5 to 5 feet – hand auger
HERC03	HERC03-B	WA	9/28/10	31.34417	89.31328 ±16'	Oldest material in "back 40": black	
						organic material; strong odor; sandier	4 to 5 feet - hand snoer
HERC04	HERC04-B	WA	9/28/10	31.34425	89.31284 ±15	Back organic material; some odor	6 to 7 feet – hand auger
HERC05	HERC05-A	WA	9/28/10	31.34402	89.31318 ±11'	Dark organic sludge; strong odor	5.5 to 6.5 feet – hand auger
HERC06	HERC06-B	WA	9/28/10	31.34389	89.31351 ±12°	Drier material; dark gray to black	
						sludge; strong odor; moister & sandier	
						w/depth	4.5 to 5.5 feet – hand auger
HERC07	HERC07-B	WA	9/28/10	31.34380	89.31316 ± 10 °	Drier dark organic material; moister	
						w/depth	5.5 to 6 feet – hand auger
HERC08	HERC08	WA	9/29/10	31.33928	89.30500 ± 12	Only "wetland" sample; mostly cat-	
						tails, some sludgy material; no odor	3 to 4 inches - scoop
HERC09	HERC09-B	WA	9/29/10	31.34329	89.31363 ±16'	Black sludge material into sand at 6	5 to 6 feet – tried
						feet BLS	Geoprobe; had to hand-
						THE PROPERTY OF THE PROPERTY O	auger to get enough sample
HERC10	HERC10-B	WA	9/29/10	31.34329	89.31323 ± 12	Hit sand at 6 feet bls; some odor	5 to 6 feet – hand auger
HERC11	HERC11-B	WA	9/29/10	31.34335	89.31285 ±12°	Black organic sludge; some odor; into	
						sand at 6 feet BLS	5 to 6 feet – hand auger
HERC12	HERC12-B	WA	9/29/10	31.34354	89.31357 ±11'	Black sludge; some odor; into sand at	
						5.5 feet BLS	4.5 to 5.5 feet – hand auger
HERC13	HERC13-B	WA	9/29/10	31.34377	89.31358 ±10'	Black sludge material; strong odor, oily sheen; into sand at 5.5 feet BLS	4.5 to 5.5 feet – hand auger

Page 18 of 42

TABLE 2
Detected Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

	Ctotion ID	UEPC01	UEDCO	LIED CO2	HEDCOA	UEDCOS	TEPCOK
	Sample ID	HERC01-A	HERC02-B	HERC03-B	HERC04-B	HERC05-A	HERCO6-B
	Media Code	WA	WA	WA	WA	WA	WA
S	Sample Date	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10
Analyte	Units						
(m- and/or p-)Xylene	mg/kg	5.1 J,O	U	0.76 J,O	5.8 J,O	4.6 J,O	Ω
1,2,4-Trimethylbenzene	mg/kg	3.9 J,O	7.0 J,O	2.1	4.6 J,O	4.0 J,O	0.40 J,O
1,2-Dichlorobenzene	mg/kg	Ω	Ñ	Ω	25	6.3 J,O	Ω
Benzene	mg/kg	18	37	3.4	19	7	Ω
Carbon disulfide	mg/kg	5.3 J,O	Ω	$ \Omega $	5.6 J,O	3.6 J,O	0.42 J,O
Cyclohexane	mg/kg	110	190	U	910	420	n
Ethyl Benzene	mg/kg	2.4 J,O	6.5 J,O	0.62 J,O	2.2 J,O	2.6 J,O	Ω
Isopropylbenzene	mg/kg	Ω	Ω	U	Ω	Ω	Ω
Methyl Acetate	mg/kg	Ω	U	0.72 J,O	Ω	n	Ω
Methyl Isobutyl Ketone	mg/kg	U	n	Ω	Ω	4.6 J,O	Ω
Methylcyclohexane	mg/kg	6.9 J,O	17 J,O	9.8	50	22	0.24 J,O
n- Butylbenzene	mg/kg	Ω	Ω	1.2	Ω	Ω	Ω
o-Xylene	mg/kg	U	U	0.5 J,O	Ω	N	U
p-Isopropyltoluene	mg/kg	1100	1700	420	3500	3500	38
tert-Butylbenzene	mg/kg	U	U	1.4	U	n	U
Toluene	mg/kg	7100	16000	0.82 J,O	3000	5300	280
Dimethyloctane (TIC)	mg/kg	U	U	40 NJ	U	U	U
Ethylmethylcyclohexane (TIC)	mg/kg	U	U	20 NJ	Ũ	U	U

Numbers in **BOLD** exceed the USEPA Regional Screening Levels (11/10) and/or values in the MDEQ Tier 1 TRG Table (2/28/02)

J= the identification of the analyte is acceptable; the reported value is an estimate

NJ = Presumptive evidence that analyte is present; reported as a tentative identification (TIC) with an estimated value.

O = other qualifiers have been assigned providing additional information and are defined in the analytical data sheets included as Appendix B of this report U= the analyte was not detected at or above the reporting limit

TABLE 2 (con't)
Detected Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

38	Station ID	HERC07	HERC08	HERC09	HERC10	HERC11	HERC12	HERC13
Sa	Sample ID	HERC07-B	HERC08	HERC09-B	HERC10-B	HERC11-B	HERC12-B	HERC13-B
Med	Media Code WA	WA	WA	WA	WA	WA	WA	WA
Sam	Sample Date 9/28/10	9/28/10	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10
Analyte	Units							
(m- and/or p-)Xylene	mg/kg	2.9	Ω	3.2	U	U	U	U
1,2,4-Trimethylbenzene	mg/kg	1.3 J,O	Ω	3.0	7.0 J,O	U	5.0 J,O	5.5 J,O
1,2-Dichlorobenzene	mg/kg	n	Ω	Ω	34	U	U	31
Benzene	mg/kg	n	Ω	170	140	77	440	390
Carbon disulfide	mg/kg	0.78 J,O	Ω	Ω	Ω	U	Ω	U
Cyclohexane	mg/kg	n	Ω	29	1500	100	48	870
Ethyl Benzene	mg/kg	0.92 J,O	Ŋ	$1.0 \mathrm{J,O}$	4.0 J,O	U	Ω	U
Isopropylbenzene	mg/kg	U	U	Ŋ	Ŋ	Ω	47	Ω
Methyl Acetate	mg/kg	Ω	Ω	Ω	U	Ω	U	n
Methyl Isobutyl Ketone	mg/kg	Ω	U	U	U	U	U	11 J,O
Methylcyclohexane	mg/kg	Ω	Ω	8.2	12 J,O	7.4 J,O	11 J,O	10 J,O
n- Butylbenzene	mg/kg	Ū	U	U	U	Ω	Ω	U
o-Xylene	mg/kg	0.73 J,O	U	1.0 J,O	U	Ŋ	U	n
p-Isopropyltoluene	mg/kg	170	2.6	610	3400	720	2400	3100
tert-Butylbenzene	mg/kg	U	U	U	Ŋ	U	N	Ŋ
Toluene	mg/kg	1400	34	1100	3100	2600	160	3400
Dimethyloctane (TIC)	mg/kg	U	U	n	U	U	U	Ŋ
Ethylmethylcyclohexane (TIC)	mg/kg	Ω	U	U	Ŋ	n	U	U

Numbers in **BOLD** exceed the USEPA Regional Screening Levels (11/10) and/or values in the MDEQ Tier 1 TRG Table (2/28/02)

J= the identification of the analyte is acceptable; the reported value is an estimate

NJ = Presumptive evidence that analyte is present; reported as a tentative identification (TIC) with an estimated value.

O = other qualifiers have been assigned providing additional information and are defined in the analytical data sheets included as Appendix B of this report

U= the analyte was not detected at or above the reporting limit

Page 20 of 42

TABLE 3
Volatile Organic Compounds – TCLP Results
Hercules Inc., Hattiesburg, Mississippi

	Station ID HE	ERC01 HER	HERC02	HERC03	HERC04	HERC05	HERC06
	Sample ID HEI	ERC01-A HER	IERC02-B	HERC03-B	HERC04-B	HERC05-A	HERCO6-B
	Media Code WA	WA		WA	WA	WA	WA
	Sample Date 9/28	28/10 9/28/10	/10	9/28/10	9/28/10	9/28/10	01/8/10
Analyte	Units					2000	210210
Benzene	mg/L 0.21	0.62	0.62 J.O	NA-5	0.22	0.23	NA-5

	Station ID HERC07	HERC07	HERC08	HERC09	HERC10	HERC11	HERC12	HERC13
	Sample ID	HERC07-B	HERC08	HERC09-B	HERC10-B	HERC11-B	HERC12-R	HFRC13-R
	Media Code	WA	WA	WA	WA	WA	WA	WA
	Sample Date	9/28/10	9/29/10	9/29/10	9/29/10	9/29/10	01/62/6	0/20/10
Analyte	Units					2000	01/07/0	01/77/10
Benzene	mg/L	NA-5	NA-5	1.8	2.2	0.54 J.O	×	3.6

Numbers in **BOLD** exceed the EPA Regulatory Level of 0.5 mg/L for benzene.

TABLE 4
EPA and MDEQ Regulatory Levels for Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

		MDEQ Tier 1 TRG		EPA RSLs
		Soil	Soll	Soil
Analyte	Units	Restricted - mg/kg	Unrestricted - mg/kg	Residential – mg/kg
(m- and/or p-)Xylene	mg/kg	m = 418; $p = 461$	m = 418; $p = 461$	3400
1,2,4-Trimethylbenzene	mg/kg	102000	3910	62
1,2-Dichlorobenzene	mg/kg	279	279	1900
Benzene	mg/kg	1.36	0.887	1.1
Carbon disulfide	mg/kg	7.97	7.97	820
Cyclohexane	mg/kg	NS	NS	2000
Ethyl Benzene	mg/kg	395	395	5.4
Isopropylbenzene (AKA cumene)	mg/kg	9.43	9.43	2100
Methyl Acetate	mg/kg	2040000	78200	78000
Methyl Isobutyl Ketone	mg/kg	163000	6260	5300
Methylcyclohexane	mg/kg	NS	NS	SN
n- Butylbenzene	mg/kg	81800	3130	SN
o-Xylene	mg/kg	413	413	3800
p-Isopropyltoluene	mg/kg	NS	NS	NS
tert-Butylbenzene	mg/kg	81800	3130	NS
Toluene	mg/kg	38	38	2000
Dimethyloctane (TIC)	mg/kg	NS	NS	NS
Ethylmethylcyclohexane (TIC)	mg/kg	NS	NS	NS

Regulatory levels are taken from the USEPA Regional Screening Levels (11/10) and the MDEQ Tier 1 TRG Table (2/28/02) NS = No Regulatory Standard/Level

TABLE 5
Detected Semi Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

	Station ID	HERC01	HERC02	HERC03	HERC04	HERC05	HERC06	HERC07
	Sample ID	HERC01-A	HERC02-B	HERC03-B	HERC04-B	HERC05-A	HERC06-B	HERC07-B
\mathbf{M}	Media Code	WA	WĄ	WA	WA	WA	WA	WA
San	Sample Date	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10
Analyte	Units							
(3-and/or 4-)Methylphenol	mg/kg	20 J,O	50	U	53	100	U	78
1,1-Biphenyl	mg/kg	1600	3900	130	1800	1200	120	330
2,4-Dimethylphenol	mg/kg	U	U	U	6.0 J,O	U	U	Ω
2-Methylnaphthalene	mg/kg	4.6	5.6	U	8.4	14	U	U
2-Methylphenol	mg/kg	7.8 J,O	4.7 J,O	U	4.3 J,O	4.9 J,O	U	17 J,O
Acenaphthene	mg/kg	Ω	2.9	U	3.8	2.8	U	U
Dibenzofuran	mg/kg	Ω	4.1	Ω	3.0	Ω	U	U
Fluoranthene	mg/kg	11 J,O	8.6	Ω	Ω	11	U	U
Fluorene	mg/kg	3.0	3.4	Ω	2.7	U	U	U
Naphthalene	mg/kg	6.2	8.8	Ω	7.8	8.7	U	U
Phenanthrene	mg/kg	Ω	5.5 J,O	Ω	3.0 J,N	U	\mathbf{n}	U
Phenol	mg/kg	5.3 J,O	5.4 J,O	8.9 J,O	71	31	U	Ω
Pyrene	mg/kg	16	U	U	3.6	5.7	U	D
(Dimethylethyl)ethoxybenzene (TIC)	mg/kg	100 NJ	300 JN	U	U	U	U	U
(Dimethylethyl)methylphenol (TIC)	mg/kg	U	U	U	U	U	U	n
(Menthenol)terpineol (TIC)	mg/kg	90 NJ	60 NJ	U	300 NJ	300 NJ	Ŋ	U
(Methylpropyl)benzene (TIC)	mg/kg	Ω	U	U	U	U	U	Ŋ
Bis(methylethyl)biphenyl (TIC)	mg/kg	U	U	U	U	U	U	D
Camphene (TIC)	mg/kg	200 NJ	200 NJ	U	300 NJ	200 NJ	n	U
Camphor (TIC)	mg/kg	Π	Ω	U	200 NJ	U	U	U
Chlorotrimethylbicycloheptane (TIC)	mg/kg	Ω	l U	n	100 NJ	100 NJ	Ŋ	U
Cycloisolongifolene (TIC)	mg/kg	80 NJ	80 NJ	U	U	200 NJ	n	U
Decahydrotrimethylmethylenemethanoazulene (TIC)	mg/kg	Ω	n	Ω	Ŋ	400 NJ	n	Ω
Dimethylisopropylphenanthrene (TIC)	mg/kg	U	Ω	200 NJ	200 NJ	100 NJ	200 NJ	200 NJ
Diphenyl ether (TIC)	mg/kg	1000 NJ	U	800 NJ	n	U	200 NJ	600 NJ
Ethyl(methylethyl)benzene (TIC)	mg/kg	60 NJ	70 NJ	U	n	U	n	n

TABLE 5 (con't)
Detected Semi Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

. N	Station ID Sample ID Media Code Sample Date	HERC01 HERC01-A WA 9/28/10	HERC02-B HERC02-B WA 9/28/10	HERC03-B HERC03-B WA 9/28/10	HERC04-B HERC04-B WA 9/28/10	HERC05-A HERC05-A WA 9/28/10	HERC06-B HERC06-B WA 9/28/10	HERC07 HERC07-B WA 9/28/10
Analyte	Units							
Hexahydrodimethyl(methylethyl)naphthalene (TIC)	mg/kg	n	n	Ω	n	400 NJ	U	U
Hexahydrotetramethylmethanonaphthalene (TIC)	mg/kg	1000 NJ	U	600 NJ	1000 NJ	U	2000 NJ	1000 NJ
Limonene (TIC)	mg/kg	300 NJ	U	U	U	U	Ω	U
Methyl(methylethyl)benzene (TIC)	mg/kg	2000 NJ	3000 NJ	300 NJ	U	U	U	U
Methyl(methylethyl)cyclohexane (TIC)	mg/kg	800 MJ	600 NJ	2000 NJ	U	U	U	D
Methyl(methylethyl)cyclohexene (TIC)	mg/kg	Ω	U	U	U	n	Ω	U
Methyl(methylethyl)phenanthrene (TIC)	mg/kg	Ω	U	200 NJ	U	n	U	D
Petroleum Product	mg/kg	N	N	U	Z	Z	Z	Z
Phenanthrenecarboxylic acid (TIC)	mg/kg	Ω	U	U	U	200 NJ	U	Ω
Pinene (TIC)	mg/kg	200 NJ	200 NJ	U	700 NJ	900 NJ	Ω	U
Propylphenol (TIC)	mg/kg	Ω	50 NJ	U	200 NJ	ASSESSMENT TO THE PROPERTY OF	U	Ω
Trimethylbicycloheptane (TIC)	mg/kg	Ω	U	300 NJ	300 NJ	400 NJ	U	Ŋ
Unidentified Compound(s)	mg/kg	70 J	f 006 J	3000 J	2000 J	700 J	6000 J	5000J

Numbers in BOLD exceed one or both of the USEPA Regional Screening Levels (11/10) or the MDEQ Tier 1 TRG Table (2/28/02)

J= the identification of the analyte is acceptable; the reported value is an estimate

NJ = Presumptive evidence that analyte is present; reported as a tentative identification (TIC) with an estimated value.

O = other qualifiers have been assigned providing additional information and are defined in the analytical data sheets included as Appendix B of this report

U= the analyte was not detected at or above the reporting limit

TIC = Tentatively Identified Compound

TABLE 5 (con't)
Detected Semi Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

	Station ID	HERC08 HERC08	HERC09	HERC10 HERC10-R	HERC11	HERC12 HERC12-R	HERC13 HFRC13-R
A Me	Media Code	WA	WA	WA	WA	WA	WA
Sar	Sample Date	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10
Analyte	Units						
(3-and/or 4-)Methylphenol	mg/kg	U	n	Ω	13 J,O	3.1 J,O	18 J,O
1,1-Biphenyl	mg/kg	U	290	1600	480	200	1500
2,4-Dimethylphenol	mg/kg	U	U	U	Ω	Ω	U
2-Methylnaphthalene	mg/kg	U	2.6	4.6	2.6	3.5	4.1
2-Methylphenol	mg/kg	U	U	U	3.8 J,O	Ω	4.0 J,O
Acenaphthene	mg/kg	U	Ū	U	U	U	U
Dibenzofuran	mg/kg	U	U	Ω	U	U	U
Fluoranthene	mg/kg	U	6.8	Ω	10	9.5	7.0
Fluorene	mg/kg	Ω	Ω	Ω	U	U	U
Naphthalene	mg/kg	Ω	3.1	6.7	3.3	3.9	5.2
Phenanthrene	mg/kg	Ω	3.1 J,O	Ω	5.0 J,O	Ω	U
Phenol	mg/kg	Ω	7.2 J,O	18 J,O	6.2 J,O	15 J,O	28
Pyrene	mg/kg	Ω	3.5	3.4	4.8	U	3.1
(Dimethylethyl)ethoxybenzene (TIC)	mg/kg	U	Ω	Ŋ	U	U	U
(Dimethylethyl)methylphenol (TIC)	mg/kg	U	100 NJ	U	200 NJ	n	Ŋ
(Menthenol)terpineol (TIC)	· mg/kg	Ω	Ω	200 NJ	Ω	U	400 NJ
(Methylpropyl)benzene (TIC)	mg/kg	U	Ω	90 NJ	U	U	U
Bis(methylethyl)biphenyl (TIC)	mg/kg	70 NJ	Ω	U	U	n	U
Camphene (TIC)	mg/kg	Ω	100 NJ	1000 NJ	100 NJ	200 NJ	1000 NJ
Camphor (TIC)	mg/kg	U	n	U	U	U	U
Chlorotrimethylbicycloheptane (TIC)	mg/kg	Ω	Ω	Ω	Π	n	n n
Cycloisolongifolene (TIC)	mg/kg	Ω	Ω	Ω	U	U	U
Decahydrotrimethylmethylenemethanoazulene (TIC)	mg/kg	Ŋ	300 NJ	n	Ω	n	Ω
Dimethylisopropylphenanthrene (TIC)	mg/kg	400 NJ	400 NJ	Ω	200 NJ	300 NJ	200 NJ
Diphenyl ether (TIC)	mg/kg	U	1000 NJ	200 NJ	Ŋ	2000 NJ	5000 NJ
Ethyl(methylethyl)benzene (TIC)	mg/kg	Ω	Ω	U	U	U	U

TABLE 5 (con't)
Detected Semi Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

	Station ID	HERCO8	HERC09	HERC10	HERC11	HERC12	HERC13
	Sample ID	HERC08	HERC09-B	HERC10-B	HERC11-B	HERC12-B	HERC13-B
Ä	Media Code	WA	WA	WA	WA	WA	WA
Sal	Sample Date	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10
Analyte	Units					And the second s	
Hexahydrodimethyl(methylethyl)naphthalene (TIC)	mg/kg	U	Ω	n	U	U	U
Hexahydrotetramethylmethanonaphthalene (TIC)	mg/kg	200 NJ	2000 NJ	Ω	1000 NJ	500 NJ	1000 NJ
Limonene (TIC)	mg/kg	Ω	Ω	Ω	U	U	U
Menthene (TIC)	mg/kg	Ω	fN 009	U	100 NJ	U	U
Methyl(methylethyl)benzene (TIC)	mg/kg	Ω	100 NJ	7000 NJ	700 NJ	3000 NJ	7000 NJ
Methyl(methylethyl)cyclohexane (TIC)	mg/kg	U	1000 NJ	4000 NJ	2000 NJ	2000 NJ	4000 NJ
Methyl(methylethyl)cyclohexene (TIC)	mg/kg	Ω	100 NJ	U	U	80 NJ	200 NJ
Methyl(methylethyl)phenanthrene (TIC)	mg/kg	Ω	Ω	U	U	U	U
Petroleum Product	mg/kg	N	N	N	Z	N	U
Phenanthrenecarboxylic acid (TIC)	mg/kg	Ω	Ω	U	U	U	Ω
Pinene (TIC)	mg/kg	Ω	Ω	2000 NJ	100 NJ	Ω	2000 NJ
Propylphenol (TIC)	mg/kg	Ω	U	200 NJ	U	300 NJ	200 NJ
Trimethylbicycloheptane (TIC)	mg/kg	Ω	100 NJ	200 NJ	200 NJ	200 NJ	200 NJ
Unidentified Compound(s)	mg/kg	2000 J	1000 J	2000 J	2000 J	1000 J	2000 NJ
			,				

Numbers in **BOLD** exceed one or both of the USEPA Regional Screening Levels (11/10) or the MDEQ Tier 1 TRG Table (2/28/02)

J= the identification of the analyte is acceptable; the reported value is an estimate

NJ = Presumptive evidence that analyte is present; reported as a tentative identification (TIC) with an estimated value.

O = other qualifiers have been assigned providing additional information and are defined in the analytical data sheets included as Appendix B of this report

U= the analyte was not detected at or above the reporting limit

TIC = Tentatively Identified Compound

TABLE 6
EPA and MDEQ Regulatory Levels for Semi Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

		MDEQ Tier 1 TRG	MDEQ Tier 1 TRG	EPA RSLs
		Soil	Soil	Soil
Analyte	Units	Restricted - mg/kg	Unrestricted - mg/kg	Residential – mg/kg
(3-and/or 4-)Methylphenol	mg/kg	102000/10200	3910/391	7500
1.1-Biphenyl	mg/kg	10200	3910	3900
2,4-Dimethylphenol	mg/kg	40800	1560	1200
2-Methylnaphthalene	mg/kg	40900	1560	310
2-Methylphenol	mg/kg	102000	3910	3100
Acenaphthene	mg/kg	123000	4690	3400
Dibenzofuran	mg/kg	8180	313	78
Fluoranthene	mg/kg	81700	3130	2300
Fluorene	mg/kg	81700	3130	2300
Naphthalene	mg/kg	247	194	3.6
Phenanthrene	mg/kg	61300	2350	SN
Phenol	mg/kg	123000	46900	18000
Pyrene	mg/kg	61300	2350	1700
(Ďimethylethyl)ethoxybenzene (TIC)	mg/kg	NS	SN	NS
(Dimethylethyl)methylphenol (TIC)	mg/kg	NS	NS	NS
(Menthenol)terpineol (TIC)	mg/kg	NS	NS	NS
(Methylpropyl)benzene (TIC)	mg/kg	NS	SN	NS
Bis(methylethyl)biphenyl (TIC)	mg/kg	NS	NS	NS
Camphene (TIC)	mg/kg	SN	NS	NS
Camphor (TIC)	mg/kg	NS	NS	NS
Chlorotrimethylbicycloheptane (TIC)	mg/kg	NS	NS	NS
Cycloisolongifolene (TIC)	mg/kg	SN	NS	NS
Decahydrotrimethylmethylenemethanoazulene (TIC)	mg/kg	NS	NS	NS
Dimethylisopropylphenanthrene (TIC)	mg/kg	NS	NS	NS
Diphenyl ether (TIC)	mg/kg	SN	NS	NS
Ethyl(methylethyl)benzene (TIC)	mg/kg	NS	NS	NS
Hexahydrodimethyl(methylethyl)naphthalene (TIC)	mg/kg	NS	NS	NS

NS = No Regulatory Standard/Level TIC = Tentatively Identified Compound

TABLE 6 (con't)
EPA and MDEQ Regulatory Levels for Semi Volatile Organic Compounds
Hercules Inc., Hattiesburg, Mississippi

		MDEQ Tier 1 TRG	MDEQ Tier 1 TRG	EPA RSLs
		Soil	Soil	Soil
Analyte	Units			
Hexahydrotetramethylmethanonaphthalene (TIC)	mg/kg	NS	NS	NS
Limonene (TIC)	mg/kg	NS	NS	NS
Menthene (TIC)	mg/kg	NS	NS	NS
Methyl(methylethyl)benzene (TIC)	mg/kg	NS	NS	NS
Methyl(methylethyl)cyclohexane (TIC)	mg/kg	NS	NS	NS
Methyl(methylethyl)cyclohexene (TIC)	mg/kg	SN	NS	NS
Methyl(methylethyl)phenanthrene (TIC)	mg/kg	NS	NS	NS
Petroleum Product	mg/kg	NS	NS	NS
Phenanthrenecarboxylic acid (TIC)	mg/kg	NS	NS	NS
Pinene (TIC)	mg/kg	NS	NS	NS
Propylphenol (TIC)	mg/kg	NS	SN	NS
Trimethylbicycloheptane (TIC)	mg/kg	NS	SN	NS
Unidentified Compound(s)	mg/kg	NS	NS	NS
C. C				

NS = No Regulatory Standard/Level TIC = Tentatively Identified Compound

Hercules Inc., Hattiesburg, Mississippi TABLE 7 - Metals Data

DIALION IN	STATE OF THE PROPERTY OF THE P		Y Y I I	75.)	エエスのこと	HFRCOK	HFRC07
Sample ID	HERC01-A	HERC02-B	HERC03-B	HERC04-B	HERC05-A	HERC06-B	HERC07-B
Media Code	WA	WA	WA	WA	WA	WA	WA
Sample Date	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10	9/28/10
_ Units							
mg/kg	0099	4900	5700	5200	5100	5800	6700
mg/kg	n	U	Ω	Ω	Ω	U	U
mg/kg	U	U	Ω	6.4	5.6	U	D
mg/kg	18	18	21	27	35	100 J,O	23
mg/kg	Ω	U	Ω	Ω	Ω	n	Ŋ
mg/kg	U	Ω	Ω	0.46	0.49	U	0.48
mg/kg	75 J,O	58	210	400	2000	5000	710
mg/kg	24	person (L.T	29	45	20 J,O	32
mg/kg	7.9	14	2.9	14	17	7.2	9.5
mg/kg	69 J,O	44	56	100	84	27 J,O	26
mg/kg	1200 J,O	1600	4300	3400	4600	4000 J,O	5200
mg/kg	23	60	9.1	26	34	22	23
mg/kg	65	45	230	92	170	440 J,O	62
mg/kg	4.6	3.8	31	14	32	200 J,O	37
mg/kg	8.0	3.1	Ω	4.0	4.8	21 J,O	40
mg/kg	71 J,O	120	08	200	210	54 J,O	44
mg/kg	U	Ú	180	96	110	160	D
mg/kg	Ω	Ω	n	n	Ŋ	Ŋ	Ŋ
mg/kg	Ω	Ŋ	Ŋ	n	n	Ω	Ŋ
mg/kg	170 J,O	150 J,O	U	130 J,O	460 J,O	180 J,O	130 J,O
mg/kg	2.1	1.6	2.1	6.1	8.9	34 J,O	8.9
mg/kg	Ω	U	U	ח	Ŋ	n	Ω
mg/kg	32	17	62	42	51	56 J,O	22
mg/kg	4.3	2.1	8.7	5.6	9.9	3.9	2.8
mg/kg	0.58	0.57	1.2	0.99	1.1	1.9	1.7
mg/kg	270 J,O	120	89	510	069	500 J,O	650
	mg/kg		6600 U U U U U T5 J,O 24 7.9 69 J,O 1200 J,O 1200 J,O 23 65 4.6 8.0 T1 J,O U U U U U U U 1200 J,O 23 65 4.6 8.0 U U 170 J,O 170 J,O	6600 4900 U U U U U U U U U U U U U U U U U U	6600 4900 5700 U U U U U U U U U U U U U U U U U U U U U T2JO 58 210 24 11 7.7 7.9 14 2.9 69 J,O 44 2.9 69 J,O 44 2.9 69 J,O 44 2.9 65 45 2.30 65 45 2.30 8.0 3.1 U V U U U U U U U U U U U U U U U U U U U U U U U U U U <t< td=""><td>6600 4900 5700 5200 U U U U U U U U U U U U U U U U U U U U U U U U T.9 14 2.9 14 24 11 7.7 29 7.9 14 2.9 140 7.9 14 2.9 140 69 J,O 44 2.9 100 1200 J,O 1600 4300 3400 23 60 9.1 26 65 45 230 76 4.6 3.8 31 14 8.0 3.1 U 4.0 8.0 3.1 U U 0 U U U U 0 U U U U</td><td>6600 4900 5700 5200 5100 U</td></t<>	6600 4900 5700 5200 U U U U U U U U U U U U U U U U U U U U U U U U T.9 14 2.9 14 24 11 7.7 29 7.9 14 2.9 140 7.9 14 2.9 140 69 J,O 44 2.9 100 1200 J,O 1600 4300 3400 23 60 9.1 26 65 45 230 76 4.6 3.8 31 14 8.0 3.1 U 4.0 8.0 3.1 U U 0 U U U U 0 U U U U	6600 4900 5700 5200 5100 U

Numbers in BOLD exceed one or both of the USEPA Regional Screening Levels (11/10) or the MDEQ Tier 1 TRG Table (2/28/02)

J= the identification of the analyte is acceptable; the reported value is an estimate

O = other qualifiers have been assigned providing additional information and are defined in the analytical data sheets included as Appendix B U= the analyte was not detected at or above the reporting limit

SESD PROJECT NO. 10-0629

TABLE 7 - Metals Data (con't) Hercules Inc., Hattiesburg, Mississippi

	Station ID	HERC08	HERC09	HERC10	HERC11	HERC12	HERC13
	Sample ID Media Code	HEKCUS WA	HEKCU9-B WA	нексто-в WA	HERCII-B WA	нексі <i>2-</i> в WA	HERCI3-B WA
	Sample Date	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10	9/29/10
Analyte	Units						
Aluminum	mg/kg	7900	7100	6400	2000	0029	0089
Antimony	mg/kg	Ω	n	Ω	Ω	Ω	U
Arsenic	mg/kg	U	U	5.0	U	Ω	5.6
Barium	mg/kg	61	23	33	23	30	45
Beryllium	mg/kg	Ω	Ω	U	U	Ω	U
Cadmium	mg/kg	Ω	Ω	Ω	Ω	Ω	U
Calcium	mg/kg	250	530	2800	350	1200	1700
Chromium	mg/kg	20	20	26	25	18	36
Cobalt	mg/kg	2.7	10	14	10	13	21
Copper	mg/kg	17	110	210	93	110	210
Iron	mg/kg	8300	3500	3200	1900	4700	3100
Lead	mg/kg	24	25	23	23	18	36
Magnesium	mg/kg	240	160	200	170	210	150
Manganese	mg/kg	350	39	36	14	36	15
Molybdenum	mg/kg	37	13	6.4	4.0	2.8	5.6
Nickel	mg/kg	8.2	150	340	140	270	490
Potassium	mg/kg	210	160	220	160	170	190
Selenium	mg/kg	Ω	U	Ω	Ŋ	Ŋ	U
Silver	mg/kg	n	1.0	Ŋ	Ω	Ŋ	U
Sodium	mg/kg	D	150 J,O	210 J,O	180 J,O	240 J,O	230 J,O
Strontium	mg/kg	2.6	4.6	7.3	4.2	8.5	8.9
Thallium	mg/kg	U	U	Ω	n	D	Ω
Titanium	mg/kg	86	46	61	52	54	92
Vanadium	mg/kg	18	5.9	2.6	7.2	7.5	9.0
Yttrium	mg/kg	2.7	2.0	1.2	1.2	1.6	1.2
Zinc	mg/kg	130	220	570	270	370	480

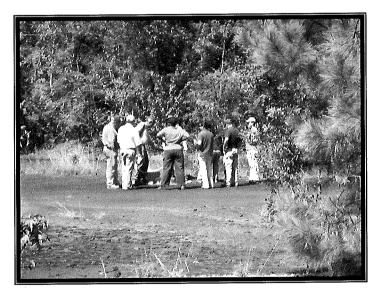
Numbers in BOLD exceed one or both of the USEPA Regional Screening Levels (11/10) or the MDEQ Tier 1 TRG Table (2/28/02) J= the identification of the analyte is acceptable; the reported value is an estimate

O = other qualifiers have been assigned providing additional information and are defined in the analytical data sheets included as Appendix B U= the analyte was not detected at or above the reporting limit

TABLE 8 - EPA and MDEQ Regulatory Levels for Metals Hercules Inc., Hattiesburg, Mississippi

		MDEQ- Soil	MDEQ- Soil	EPA RSLs - Soil
Analyte	Units	Restricted - mg/kg	Unrestricted - mg/kg	Residential – mg/kg
Aluminum	mg/kg	2040000	78200	77000
Antimony	mg/kg	81.7	31.3	31 (metallic)
Arsenic	mg/kg	3.82	0.426	0.39 (inorganic)
Barium	mg/kg	14300	5480	15000
Beryllium	mg/kg	1020	156	160 (& compounds)
Cadmium	mg/kg	1020	39.1	70 (diet)
Calcium	mg/kg	SN	NS	NS
Chromium III	mg/kg	3070000	117000	120000
Chromium VI	mg/kg	381	227	0.29
Cobalt	mg/kg	12300	4690	23
Copper	mg/kg	8170	3130	3100
Iron	mg/kg	613000	23500	55000
Lead	mg/kg	1700	400	400 (& compounds)
Magnesium	mg/kg	SN	NS	NS
Manganese	mg/kg	4080	1560	1800 (non-diet)
Molybdenum	mg/kg	1020	391	390
Nickel	mg/kg	4080	1560	1500 (soluble salts)
Potassium	mg/kg	SN	NS	NS
Selenium	mg/kg	1020	391	390
Silver	mg/kg	1020	391	390
Sodium	mg/kg	NS	NS	NS
Strontium (stable)	mg/kg	123000	46900	47000
Thallium	mg/kg	143	5.48	NS
Titanium	mg/kg	8180000	313000	NS
Vanadium	mg/kg	1430	548	5.5 (metallic)
Yttrium	mg/kg	NS	NS	NS
Zinc	mg/kg	61300	23500	23000 (metallic)
			The second secon	

Regulatory levels are taken from the USEPA Regional Screening Levels (11/10) or the MDEQ Tier 1 TRG Table (2/28/02) NS = No Regulatory Standard/Level


APPENDIX A

PHOTOGRAPHS OF SAMPLING ACTIVITIES

Hercules Inc., Hattiesburg, Mississippi SESD Project Identification Number: 10-0629

Photograph 1 Example of waste/sludge from the "Back 40"


Photograph 2
Assessing the HERC03-B sample location

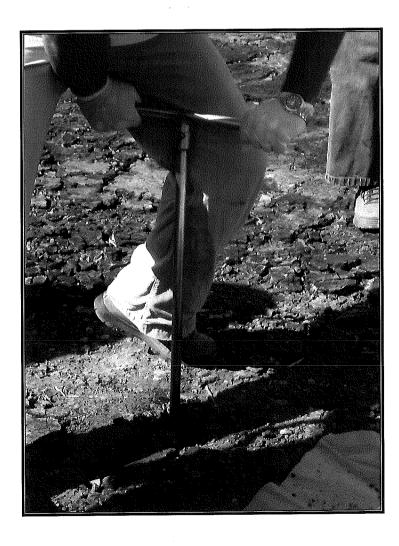
Photograph 3
Example of waste/ sludge from the "Back 40"

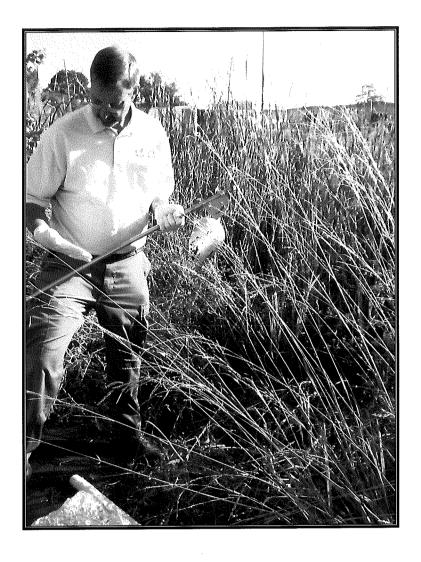
Photograph 4
Example of waste/ sludge from the "Back 40"

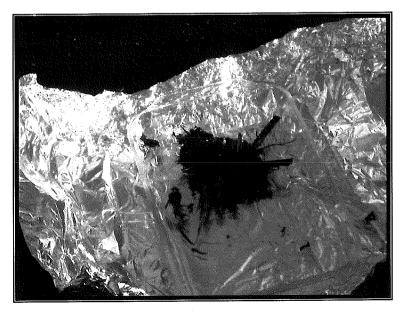
Photograph 5 Collecting sample HERC03-B

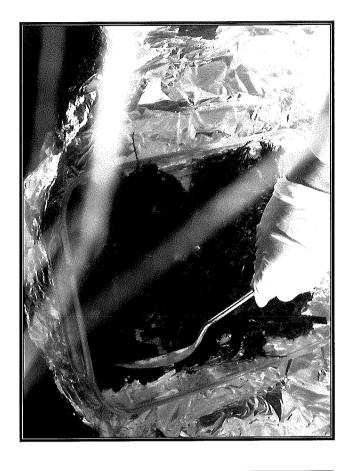
Photograph 6
Air monitoring during HERC03-B sample collection

Photograph 7
Sample location HERC05-A

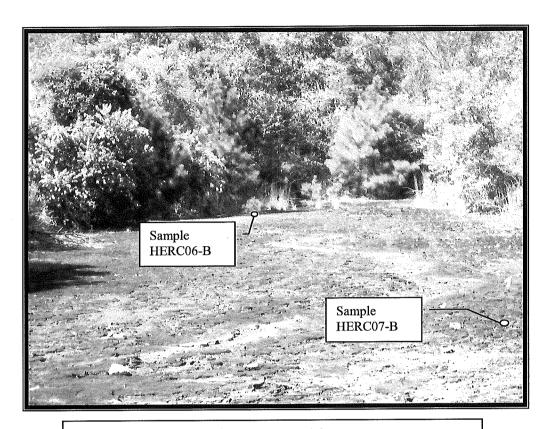

Photograph 8
Sample location HERC04-B


Photograph 9 Sample HERC06-B


Photograph 10 Sample HERC07-B


Photograph 11 Hand augering sample HERC07-B

Photograph 12 Sampling "wetlands" to collect HERC08


Photograph 13
Sample HERC08 – note dense root
system

Photograph 14 Sample HERC08 – note dense root system

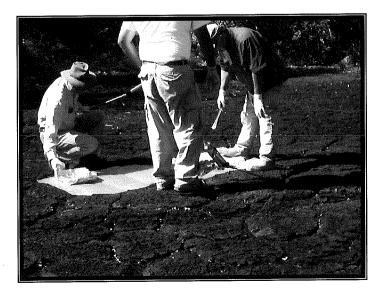
Photograph 15
Attempting to collect another sample from the "wetlands" - dense root system prevented sample collection

Photograph 16 Locations for samples HERC06-B and HERC07-B

Photograph 17 – General area of sample HERC05-A

Photograph 18 General area of sample HERC04-B

Photograph 19 Coring HERC09-B using Geoprobe


Photograph 20 Collecting sample HERC09-B with hand auger

Photograph 21 Collecting sample HERC11-B

Photograph 22 Collecting sample HERC11-B

Photograph 23 Collecting sample HERC12-B

APPENDIX B

SESD ANALYTICAL DATA SHEETS

Hercules Inc., Hattiesburg, Mississippi SESD Project Identification Number: 10-0629

Semi-Volatile Organic Compounds = 59 pages - issued 11/1/10

Volatile Organic Compounds = 60 pages – issued 11/8/10

Metals = 34 pages – issued 1/4/11

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

November 1, 2010

4SESD-ASB

MEMORANDUM

SUBJECT:

FINAL Analytical Report

Project: 10-0629, Hercules Inc

Civil Enforcement

FROM:

Janet Muse

OCS Chemist

THRU:

Sallie Hale, Chief

ASB Organic Chemistry Section

TO:

Sharon Matthews

Attached are the final results for the analytical groups listed below. These analyses were performed in accordance with the Analytical Support Branch's (ASB) Laboratory Operations and Quality Assurance Manual (ASB LOQAM) found at www.epa.gov/region4/sesd/asbsop. Any unique project data quality objectives specified in writing by the data requestor have also been incorporated into the data unless otherwise noted in the Report Narrative. Chemistry data have been verified based on the ASB LOQAM specifications and may have been qualified if the applicable quality control criteria were not met. For a listing of specific data qualifiers and explanations, please refer to the Data Qualifier Definitions included in this report. The reported results are representative only of the samples as received by the laboratory.

Analyses Included in this report:

Method Used:

Semi Volatile Organics (SVOA)

Semivolatile organic compounds

EPA 8270D

TCLP SemiVolatiles (TCLPS)

Semivolatile organic compounds

EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Sample Disposal Policy

Because of the laboratory's limited space for long term sample storage, our policy is to dispose of samples on a periodic schedule. Please note that within 60 days of this memo, the original samples and all sample extracts and/or sample digestates will be disposed of in accordance with applicable regulations. The 60-day sample disposal policy does not apply to criminal samples which are held until the laboratory is notified by the criminal investigators that case development and litigation are complete.

These samples may be held in the laboratory's custody for a longer period of time if you have a special project need. If you wish for the laboratory to hold samples beyond the 60-day period, please contact our Sample Control Coordinator, Debbie Colquitt, by e-mail at Colquitt.Debbie@epa.gov, and provide a reason for holding samples beyond 60 days

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

SAMPLES INCLUDED IN THIS REPORT

Project: 10-0629, Hercules Inc

Sample ID	Laboratory ID	Matrix	Date Collected	Date Received
ERB01	E104009-01	Equipment Rinse Blank	9/23/10 13:30	10/1/10 8:35
HERC01-A	E104009-03	Waste	9/28/10 10:10	10/1/10 8:35
HERC02-B	E104009-04	Waste	9/28/10 10:55	10/1/10 8:35
HERC03-B	E104009-05	Waste	9/28/10 13:15	10/1/10 8:35
HERC04-B	E104009-06	Waste	9/28/10 13:50	10/1/10 8:35
HERC05-A	E104009-07	Waste	9/28/10 14:05	10/1/10 8:35
HERC06-B	E104009-08	Waste	9/28/10 14:55	10/1/10 8:35
HERC07-B	E104009-09	Waste	9/28/10 15:25	10/1/10 8:35
HERC08	E104009-10	Waste	9/29/10 08:50	10/1/10 8:35
HERC09-B	E104009-11	Waste	9/29/10 14:20	10/1/10 8:35
HERC10-B	E104009-12	Waste	9/29/10 14:15	10/1/10 8:35
HERC11-B	E104009-13	Waste	9/29/10 14:30	10/1/10 8:35
HERC12-B	E104009-14	Waste	9/29/10 14:50	10/1/10 8:35
HERC13-B	E104009-15	Waste	9/29/10 15:10	10/1/10 8:35

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

DATA QUALIFIER DEFINITIONS

U	The analyte was not detected at or above the reporting limit.
H-7	Recommended preparation holding time exceeded
J	The identification of the analyte is acceptable; the reported value is an estimate.
N	There is presumptive evidence that the analyte is present; the analyte is reported as a tentative identification.
NA-5	Not Analyzed. Cannot exceed TCLP regulatory levels based on Total Scan analyses.
NJ	Presumptive evidence that analyte is present; reported as a tentative identification with an estimated value.
Q-2	Result greater than MDL but less than MRL.
QL-2	Laboratory Control Spike Recovery greater than method control limits
QL-3	Laboratory Control Spike Precision outside method control limits
QM-1	Matrix Spike Recovery less than method control limits
OM-6	Matrix Spike Recovery less than 10%
R	The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The data are rejected and considered unusable.

ACRONYMS AND ABBREVIATIONS

CAS	Chemical Abstracts Service
	Note: Analytes with no known CAS identifiers have been assigned codes beginning with "E", the EPA ID as assigned by
	the EPA Substance Registry System (www.epa.gov/srs), or beginning with "R4-", a unique identifier assigned by the EPA

Region 4 laboratory.

- Method Detection Limit The minimum concentration of a substance (an analyte) that can be measured and **MDL** reported with a 99% confidence that the analyte concentration is greater than zero.
- Minimum Reporting Limit Analyte concentration that corresponds to the lowest demonstrated level of acceptable MRL quantitation. The MRL is sample-specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments.
- Tentatively Identified Compound An analyte identified based on a match with the instrument software's mass TIC spectral library. A calibration standard has not been analyzed to confirm the compound's identification or the estimated concentration reported.

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Station ID:

Lab ID: E104009-01

Matrix: Equipment Rinse Blank

CAS Number	lected: 9/23/10 13:30	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
INumber	Analyte	пезииз Дишукгз			1 теритей		
1319-77-3	(3-and/or 4-)Methylphenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
92-52-4	1,1-Biphenyl	2.0 U, J, H-7	ug/L	2.0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
95-94-3	1,2,4,5-Tetrachlorobenzene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
95-50-1	1,2-Dichlorobenzene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
541-73-1	1,3-Dichlorobenzene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
106-46-7	1,4-Dichlorobenzene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
90-12-0	l-Methylnaphthalene	2.0 U, J, H-7	ug/L	2.0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6;57	10/13/10 17:44	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
120-83-2	2,4-Dichlorophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
105-67-9	2,4-Dimethylphenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
51-28-5	2,4-Dinitrophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6;57	10/13/10 17:44	EPA 8270D
121-14-2	2,4-Dinitrotoluene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
606-20-2	2,6-Dinitrotoluene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
91-58-7	2-Chloronaphthalene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
95-57-8	2-Chlorophenol	9.8 U, J, H-7	ug/L	9,8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
91-57-6	2-Methylnaphthalene	2.0 U, J, H-7	ug/L	2.0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
95-48-7	2-Methylphenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
88-74-4	2-Nitroaniline	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
88-75-5	2-Nitrophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
99-09-2	3-Nitroaniline	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
106-47-8	4-Chloroaniline	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
100-01-6	4-Nitroaniline	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
100-02-7	4-Nitrophenol	9.8 U, J, H-7, QL-3	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Lab ID: <u>E104009-01</u>

Station ID:

Matrix: Equipment Rinse Blank

CAS Number	Analyte	Results Qualifiers	Units	MRL Prepared	Analyzed Method
		1000		10/01/00	10/13/10 EDA 9270D
3-32-9	Acenaphthene	2.0 U, J, H-7	ug/L	2.0 6:57	17:44 BPA 8270D
08-96-8	Acenaphthylene	2.0 U, J, H-7	ug/L	2.0 6:57	17:44 EFA 6270D
8-86-2	Acetophenone	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
20-12-7	Anthracene	2.0 U, J, H-7	ug/L	2.0 6:57	10/13/10 17:44 EPA 8270D
912-24-9	Atrazine	9.8 U, J, H-7	ug/L	9.0 6:57	10/13/10 EPA 8270D 17:44 EPA 8270D
00-52-7	Benzaldehyde	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	17:44 EFA 8270D
6-55-3	Benzo(a)anthracene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 EPA 8270D 17:44 EPA 8270D
0-32-8	Benzo(a)pyrene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	17:44 ETA 6270D
05-99-2	Benzo(b)fluoranthene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 17:44 EPA 8270D
91-24-2	Benzo(g,h,i)perylene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 17:44 EPA 8270D
07-08-9	Benzo(k)fluoranthene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 17:44 EPA 8270D
00-51-6	Benzyl alcohol	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 17:44 EPA 8270D
5-68-7	Benzyl butyl phthalate	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
11-91-1	Bis(2-chloroethoxy)methane	9.8 U, J, H-7	ug/L	9.8 . 10/04/10 6:57	10/13/10 EPA 8270D 17:44
11-44-4	bis(2-Chloroethyl) Ether	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
9638-32-9	Bis(2-chloroisopropyl) ether	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D 17:44
17-81-7	Bis(2-ethylhexyl) phthalate	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
05-60-2	Caprolactam	9.8 U, J, H-7, QL-3	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D 17:44
6-74-8	Carbazole	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 EPA 8270D
18-01-9	Chrysene	2.0 U, J, H-7	ug/L	$2.0 \begin{array}{c} 10/04/10 \\ 6:57 \end{array}$	10/13/10 EPA 8270D 17:44
3-70-3	Dibenz(a,h)anthracene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 EPA 8270D
32-64-9	Dibenzofuran	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 17:44 EPA 8270D
84-66-2	Diethyl phthalate	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
31-11-3	Dimethyl phthalate	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 17:44 EPA 8270D
84-74-2	Di-n-butylphthalate	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
17-84-0	Di-n-octylphthalate	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 17:44 EPA 8270D
06-44-0	Fluoranthene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 17:44 EPA 8270D
6-73-7	Fluorene	2.0 U, J, H-7	ug/L	2.0 10/04/10 6:57	10/13/10 17:44 EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
7-47-4	Hexachlorocyclopentadiene (HCCP)	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D
7-72-1	Hexachloroethane	9.8 U, J, H-7	ug/L	9.8 10/04/10 6:57	10/13/10 EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Station ID:

Lab ID: <u>E104009-01</u>

Matrix: Equipment Rinse Blank

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
193-39-5	Indeno (1,2,3-cd) pyrene	2.0 U, J, H-7	ug/L	2.0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
78-59-1	Isophorone	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
01-20-3	Naphthalene	2.0 U, J, H-7	ug/L	2,0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
98-95-3	Nitrobenzene	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
321-64-7	n-Nitroso di-n-Propylamine	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
37-86-5	Pentachlorophenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6:57	10/13/10 17:44	EPA 8270D
35-01-8	Phenanthrene	2.0 U, J, H-7	ug/L	2.0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
108-95-2	Phenol	9.8 U, J, H-7	ug/L	9.8	10/04/10 6;57	10/13/10 17:44	EPA 8270D
129-00-0	Pyrene	2.0 U, J, H-7	ug/L	2.0	10/04/10 6:57	10/13/10 17:44	EPA 8270D
Tentatively	/ Identified Compounds:		\				
R4-0000	Tentatively Identified Compounds	10 U	ug/L	10	10/04/10 6:57	10/13/10 17:44	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC01-A Station ID: <u>HERC01</u>

Lab ID: <u>E104009-03</u>

Matrix: Waste

Date Co	llected: 9/28/10 10:10						
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	20 J, Q-2	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
92-52-4	1,1-Biphenyl	1600	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
120-83-2	2,4-Dichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
105-67-9	2,4-Dimethylphenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
51-28-5	2,4-Dinitrophenol	26 U, R, QM-6	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
121-14-2	2,4-Dinitrotoluene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
606-20-2	2,6-Dinitrotoluene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
91-58-7	2-Chloronaphthalene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
95-57-8	2-Chlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
91-57-6	2-Methylnaphthalene	4.6	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
95-48-7	2-Methylphenol	7.8 J, Q-2	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
88-74-4	2-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
88-75-5	2-Nitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
99-09-2	3-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
106-47-8	4-Chloroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
100-01-6	4-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
100-02-7	4-Nitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
83-32-9	Acenaphthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
208-96-8	Acenaphthylene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
98-86 - 2	Acetophenone	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
120-12-7	Anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
1912-24-9	Atrazine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u> Station ID: <u>HERC01</u> Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS	lected: 9/28/10 10:10						
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
56-55-3	Benzo(a)anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D .
50-32-8	Benzo(a)pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
85-68 - 7	Benzyl butyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
105-60-2	Caprolactam	26 U, R, QM-6	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
86-74-8	Carbazole	2.6 U	mg/kg	2,6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
218-01-9	Chrysene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
132-64-9	Dibenzofuran	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
84-66-2	Diethyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
131-11-3	Dimethyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
84-74-2	Di-n-butylphthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
117-84-0	Di-n-octylphthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
206-44-0	Fluoranthene	11 J, QM-1	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
86-73-7	Fluorene	3.0	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
118-74-1	Hexachlorobenzene (HCB)	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
87-68-3	Hexachlorobutadiene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	26 U, J, QM-1	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
67-72-1	Hexachloroethane	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
193-39-5	Indeno (1,2,3-cd) pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
78-59-1	Isophorone	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
91-20-3	Naphthalene	6.2	mg/kg	2,6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
98-95-3	Nitrobenzene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
621-64-7	n-Nitroso di-n-Propylamine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u>

Station ID: <u>HERC01</u>

Lab ID: <u>E104009-03</u>

Matrix: Waste

	ected: 9/28/10 10:10						
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
22-39-4	n-Nitrosodiphenylamine/Diphenylamine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
37-86-5	Pentachlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
35-01-8	Phenanthrene	2,6 U	mg/kg	2,6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
108-95-2	Phenol	5.3 J, Q-2	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
29-00-0	Pyrene	16	mg/kg	2.6	10/05/10 12:00	10/09/10 23:16	EPA 8270D
10-86-1	Pyridine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 23:16	EPA 8270D
Fentatively	dentified Compounds:						
R4-8000900	(Dimethylethyl)ethoxybenzene (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-6552	(Menthenol)terpineol (TIC)	90 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
₹4-6531	Camphene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-8000904	Cycloisolongifolene (TIC)	80 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
34-8000898	Ethyl(methylethyl)benzene (TIC)	60 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-7545	Limonene (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
₹4-6584	Methyl(methylethyl)benzene (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	800 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-6520	Pinene (TIC)	500 NJ	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D
R4-6501	Unidentified Compounds	70 J	mg/kg		10/05/10 12:00	10/09/10 23:16	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: HERC01-A

Station ID: HERC01

Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol;	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol;	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
38-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
18-74-1	Hexachlorobenzene (HCB);	NA-5		0.10	10/05/10 9;44	10/09/10 14:04	EPA 8270D
37-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
)8-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
110-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u> Station ID: <u>HERC02</u> Lab ID: <u>E104009-04</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	50	mg/kg	25	10/05/10 12:00	10/09/10 23;51	EPA 8270D
92-52-4	1,1-Biphenyl	3900	mg/kg	51	10/05/10 12:00	10/09/10 23:51	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
120-83-2	2,4-Dichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
105-67 - 9	2,4-Dimethylphenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
51-28-5	2,4-Dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
121-14-2	2,4-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
606-20-2	2,6-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
91-58-7	2-Chloronaphthalene	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
95-57-8	2-Chlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
91-57-6	2-Methylnaphthalene	5.6	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
95-48-7	2-Methylphenol	4.7 J, Q-2	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
88-74-4	2-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
88-75-5	2-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
99-09-2	3-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	25 U	. mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
106-47-8	4-Chloroaniline	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
100-01-6	4-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
100-02-7	4-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
83-32-9	Acenaphthene	2.9	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
208-96-8	Acenaphthylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
98-86-2	Acetophenone	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
120-12-7	Anthracene	2,5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
1912-24-9	Atrazine	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u>

Station ID: <u>HERC02</u>

Lab ID: <u>E104009-04</u>

Matrix: Waste

Date Collected: 9/28/10 10:55

CAS			1888 BASS		da in the		
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
56-55-3	Benzo(a)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
50-32-8	Benzo(a)pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23;51	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
85-68-7	Benzyl butyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
105-60-2	Caprolactam	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
86-74-8	Carbazole	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
218-01-9	Chrysene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
132-64-9	Dibenzofuran	4.1	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
84-66-2	Diethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
131-11-3	Dimethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
84-74-2	Di-n-butylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
117-84-0	Di-n-octylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
206-44-0	Fluoranthene	9,8	mg/kg	2,5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
86-73-7	Fluorene	3.4	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
118-74-1	Hexachlorobenzene (HCB)	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
67-72-1	Hexachloroethane	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
193-39-5	Indeno (1,2,3-cd) pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
78-59-1	Isophorone	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
91-20-3	Naphthalene	8.8	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
98-95-3	Nitrobenzene	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
621-64-7	n-Nitroso di-n-Propylamine	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D

11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u>

Lab ID: E104009-04

Station ID: <u>HERC02</u>

Matrix: Waste

	ected: 9/28/10 10:55		201				
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
87-86-5	Pentachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
85-01-8	Phenanthrene	5,5 J, QL-2	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
108-95-2	Phenol	5.4 J, Q-2	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
129-00-0	Pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/09/10 23:51	EPA 8270D
110-86-1	Pyridine	25 U	mg/kg	25	10/05/10 12:00	10/09/10 23:51	EPA 8270D
Tentatively l	dentified Compounds:		TT 200		10/05/10	10/00/10	
R4-8000900	(Dimethylethyl)ethoxybenzene (TIC)	300 NJ	mg/kg		12:00 10/05/10	10/09/10 23:51	EPA 8270D
R4-6552	(Menthenol)terpineol (TIC)	60 NJ	mg/kg		12:00	10/09/10 23:51	EPA 8270D
R4-6531	Camphene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-8000904	Cycloisolongifolene (TIC)	80 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-8000898	Ethyl(methylethyl)benzene (TIC)	70 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-6584	Methyl(methylethyl)benzene (TIC)	3000 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	600 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-6520	Pinene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-8000466	Propylphenol (TIC)	50 NJ	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D
R4-6501	Unidentified Compounds	900 J	mg/kg		10/05/10 12:00	10/09/10 23:51	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u>

Station ID: HERC02

Lab ID: E104009-04

Matrix: Waste

Date Co	llected: 9/28/10 10:55						
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5	20000000000000000000000000000000000000	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane;	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol;	NA-5		0,10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
10-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u>

Station ID: HERC03

Lab ID: <u>E104009-05</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
92-52-4	1,1-Biphenyl	130	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
38-06-2	2,4,6-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
20-83-2	2,4-Dichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
105-67-9	2,4-Dimethylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
51-28-5	2,4-Dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
121-14-2	2,4-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
506-20-2	2,6-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
01-58-7	2-Chloronaphthalene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
95-57-8	2-Chlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
34-52-1	2-Methyl-4,6-dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
01-57-6	2-Methylnaphthalene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
95-48-7	2-Methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
88-74-4	2-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
38-75-5	2-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
1-94-1	3,3'-Dichlorobenzidine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
99-09-2	3-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
01-55-3	4-Bromophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
06-47-8	4-Chloroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
100-01-6	4-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
100-02-7	4-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
33-32-9	Acenaphthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
208-96-8	Acenaphthylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
8-86-2	Acetophenone	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
20-12-7	Anthracene	2.4 U	mg/kg	2,4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
912-24-9	Atrazine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u> Station ID: <u>HERC03</u> Lab ID: <u>E104009-05</u>

Matrix: Waste

CAS	lected: 9/28/10 13:15			111			
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
00-52-7	Benzaldehyde	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
56-55-3	Benzo(a)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
50-32-8	Benzo(a)pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.4 U	mg/kg	2,4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
35-68-7	Benzyl butyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
11-91-1	Bis(2-chloroethoxy)methane	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
11-44-4	bis(2-Chloroethyl) Ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
105-60-2	Caprolactam	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
36-74-8	Carbazole	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
218-01-9	Chrysene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.4 U ·	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
132-64-9	Dibenzofuran	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
34-66-2	Diethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
31-11-3	Dimethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
34-74-2	Di-n-butylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
17-84-0	Di-n-octylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
206-44-0	Fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
36-73-7	Fluorene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
37-68-3	Hexachlorobutadiene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
57-72-1	Hexachloroethane	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.4 U	mg/kg	2,4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
8-59-1	Isophorone	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
1-20-3	Naphthalene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
8-95-3	Nitrobenzene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u>

Station ID: <u>HERC03</u>

Lab ID: <u>E104009-05</u>

Matrix: Waste

	ected: 9/28/10 13:15						
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22;06	EPA 8270D
87-86-5	Pentachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
85-01-8	Phenanthrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
108-95-2	Phenol	8.9 J, Q-2	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
129-00-0	Pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:06	EPA 8270D
110-86-1	Pyridine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:06	EPA 8270D
Tentatively	Identified Compounds:				10/05/10	10/00/10	
R4-6603	Dimethylisopropylphenanthrene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	800 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	600 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-6584	Methyl(methylethyl)benzene (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-6514	Methyl(methylethyl)phenanthrene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D
R4-6501	Unidentified Compounds	3000 J	mg/kg		10/05/10 12:00	10/09/10 22:06	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u>

Station ID: HERC03

Lab ID: <u>E104009-05</u>

Matrix: Waste

Date Co	llected: 9/28/10 13:15						
CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9;44	10/09/10 14:04	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
67-72-1	Hexachloroethane:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol;	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
110-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u> Station ID: <u>HERC04</u> Lab ID: <u>E104009-06</u>

Matrix: Waste

Date Collected: 9/28/10 13:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	53	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
92-52-4	1,1-Biphenyl	1800	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
120-83-2	2,4-Dichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
105-67-9	2,4-Dimethylphenol	6.0 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
51-28-5	2,4-Dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
121-14-2	2,4-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
606-20-2	2,6-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
91-58-7	2-Chloronaphthalene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
95-57-8	2-Chlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
91-57-6	2-Methylnaphthalene	8.4	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
95-48-7	2-Methylphenol	4.3 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
88-74-4	2-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 · 0:26	EPA 8270D
88-75-5	2-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
99-09-2	3-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
106-47-8	4-Chloroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
100-01-6	4-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
100-02-7	4-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
83-32-9	Acenaphthene	3.8	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
208-96-8	Acenaphthylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
98-86-2	Acetophenone	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
120-12-7	Anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
1912-24-9	Atrazine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D

11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u>

Station ID: <u>HERC04</u>

Lab ID: <u>E104009-06</u>

Matrix: Waste

Date Collected: 9/28/10 13:50

	lected: 9/28/10 13:50					ı	
CAS Vumber	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
00-52-7	Benzaldehyde	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
6-55-3	Benzo(a)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
0-32-8	Benzo(a)pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0;26	EPA 8270D
05-99-2	Benzo(b)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
91-24-2	Benzo(g,h,i)perylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
07-08-9	Benzo(k)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
5-68-7	Benzyl butyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
11-91-1	Bis(2-chloroethoxy)methane	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
11-44-4	bis(2-Chloroethyl) Ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0;26	EPA 8270D
9638-32-9	Bis(2-chloroisopropyl) ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
17-81-7	Bis(2-ethylhexyl) phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
05-60-2	Caprolactam	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
6-74-8	Carbazole	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
18-01-9	Chrysene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
3-70-3	Dibenz(a,h)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
32-64-9	Dibenzofuran	3.0	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
4-66-2	Diethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
31-11-3	Dimethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
4-74-2	Di-n-butylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
17-84-0	Di-n-octylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
06-44-0	Fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
6-73-7	Fluorene	2.7	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
7-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
7-47-4	Hexachlorocyclopentadiene (HCCP)	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
7-72-1	Hexachloroethane	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.5 U	mg/kg	2,5	10/05/10 12:00	10/10/10 0;26	EPA 8270D
8-59-1	Isophorone	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
1-20-3	Naphthalene	7.8	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
8-95-3	Nitrobenzene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D

11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u>

Station ID: HERC04

Lab ID: <u>E104009-06</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
37-86-5	Pentachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
35-01-8	Phenanthrene	3.0 J, QL-2	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
08-95-2	Phenol	71	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
129-00-0	Pyrene	3.6	mg/kg	2.5	10/05/10 12:00	10/10/10 0:26	EPA 8270D
10-86-1	Pyridine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 0:26	EPA 8270D
Tentatively.	dentified Compounds: (Menthenol)terpineol (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/10/10 0;26	EPA 8270D
R4-6532 R4-6531	Camphene (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-8000520	Camphor (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-8000903	Chlorotrimethylbicycloheptane (TIC)	100 NJ	mg/kg	paray was patrix receipt 30	10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	1000 NJ	mg/kg	arror ann vox AGGAAA Arromozopper (ARA	10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-6520	Pinene (TIC)	700 NJ	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-8000466	Propylphenol (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D
R4-6501	Unidentified Compounds	2000 J	mg/kg		10/05/10 12:00	10/10/10 0:26	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u>

Station ID: <u>HERC04</u>

Lab ID: <u>E104009-06</u>

Matrix: Waste

CAS							
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0,10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
38-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
18-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane;	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
8-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
10-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Station ID: <u>HERC05</u> Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS	lecteu: 9/28/10 14:05	P. J. O. 10	H. S. See	1/01	100 m s		
Number	Analyte	Results Qualifiers	Units	MAL	Prepared	Analyzed	метов
1319-77-3	(3-and/or 4-)Methylphenol	100	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
92-52-4	1,1-Biphenyl	1200	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
120-83-2	2,4-Dichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
105-67-9	2,4-Dimethylphenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
51-28-5	2,4-Dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
121-14-2	2,4-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
606-20-2	2,6-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
91-58-7	2-Chloronaphthalene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
95-57-8	2-Chlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
91-57-6	2-Methylnaphthalene	14	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01	EPA 8270D
95-48-7	2-Methylphenol	4.9 J, Q-2	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
88-74-4	2-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
88-75-5	2-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
99-09-2	3-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
106-47-8	4-Chloroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12;00	10/10/10 1:01	EPA 8270D
100-01-6	4-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
100-02-7	4-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
83-32-9	Acenaphthene	2.8	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01	EPA 8270D
208-96-8	Acenaphthylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01	EPA 8270D
98-86-2	Acetophenone	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
120-12-7	Anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01	EPA 8270D
1912-24-9	Atrazine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u>

Station ID: <u>HERC05</u>

Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS				Vent		
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed Method
100-52-7	Benzaldehyde	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D 1:01
56-55-3	Benzo(a)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
50-32-8	Benzo(a)pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
85-68-7	Benzyl butyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D
105-60-2	Caprolactam	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
86-74-8	Carbazole	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 EPA 8270D
218-01-9	Chrysene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
132-64-9	Dibenzofuran	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 EPA 8270D
84-66-2	Diethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D
131-11-3	Dimethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D 1:01
84-74-2	Di-n-butylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
117-84-0	Di-n-octylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
206-44-0	Fluoranthene	11	mg/kg	2.4	10/05/10 12:00	10/10/10 EPA 8270D
86-73-7	Fluorene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 EPA 8270D 1:01
118-74-1	Hexachlorobenzene (HCB)	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D
87-68-3	" Hexachlorobutadiene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D
67-72-1	Hexachloroethane	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
193-39-5	Indeno (1,2,3-cd) pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
78-59-1	Isophorone	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
91-20-3	Naphthalene	8.7	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01 EPA 8270D
98-95-3	Nitrobenzene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01 EPA 8270D
621-64-7	n-Nitroso di-n-Propylamine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u>

Lab ID: <u>E104009-07</u>

Station ID: <u>HERC05</u>

Matrix: Waste

CAS Number	Analyie	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
87-86-5	Pentachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
85-01-8	Phenanthrene	2,4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 1:01	EPA 8270D
108-95-2	Phenol	31	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
129-00-0	Pyrene	5.7	mg/kg	2.4	10/05/10 12:00	10/10/10 1;01	EPA 8270D
110-86-1	Pyridine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 1:01	EPA 8270D
Tentatively	dentified Compounds:						
R4-6552	(Menthenol)terpineol (TIC)	300 NJ	mg/kg	35.00	10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6531	Camphene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-8000903	Chlorotrimethylbicycloheptane (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 1;01	EPA 8270D
R4-8000904	Cycloisolongifolene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6506	Decahydrotrimethylmethylenemethanoazu lene (TIC)	400 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6539	Hexahydrodimethyl(methylethyl)naphthal ene (TIC)	400 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6519	Phenanthrenecarboxylic acid (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6520	Pinene (TIC)	900 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	400 NJ	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D
R4-6501	Unidentified Compounds	700 J	mg/kg		10/05/10 12:00	10/10/10 1:01	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Station ID: <u>HERC05</u> Lab ID: <u>E104009-07</u>

Matrix: Waste

Date Collected: 9/28/10 14:05

CAS	nected: 9/28/10 14:05						
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
10-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Station ID: <u>HERC06</u> Lab ID: <u>E104009-08</u>

Matrix: Waste

Date Collected: 9/28/10 14:55

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
92-52-4	I,1-Biphenyl	120	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
20-83-2	2,4-Dichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
105-67-9	2,4-Dimethylphenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
51-28-5	2,4-Dinitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
121-14-2	2,4-Dinitrotoluene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
606-20-2	2,6-Dinitrotoluene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
91-58-7	2-Chloronaphthalene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
95-57-8	2-Chlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
91-57-6	2-Methylnaphthalene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
95-48-7	2-Methylphenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
38-74-4	2-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
88-75-5	2-Nitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
1-94-1	3,3'-Dichlorobenzidine	26 U	mg/kg	26	10/05/10	10/09/10 20:56	EPA 8270D
99-09-2	3-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
06-47-8	4-Chloroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	26 U	mg/kg	26	10/05/10	10/09/10 20:56	EPA 8270D
00-01-6	4-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
00-02-7	4-Nitrophenol .	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
3-32-9	Acenaphthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
08-96-8	Acenaphthylene	2.6 U	mg/kg	2.6	10/05/10	10maria	EPA 8270D
8-86-2	Acetophenone	26 U	mg/kg	26	10/05/10 12:00	10/00/10	EPA 8270D
20-12-7	Anthracene	2.6 U	mg/kg	2.6	10/05/10	10 DOMO	EPA 8270D
912-24-9	Atrazine	26 U	mg/kg	26	10/05/10 12:00	10/00/10	EPA 8270D

Page 28 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629
Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Lab ID: <u>E104009-08</u>

Station ID: HERC06 Matrix: Waste

Date Collected: 9/28/10 14:55

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
56-55-3	Benzo(a)anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
50-32-8	Benzo(a)pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
.5-68-7	Benzyl butyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
105-60-2	Caprolactam	26 U	mg/kg	26	10/05/10	10/09/10 20:56	EPA 8270D
86-74-8	Carbazole	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
218-01-9	Chrysene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
132-64-9	Dibenzofuran	2.6 U	mg/kg	2.6	10/05/10	10/09/10 20:56	EPA 8270D
84-66-2	Diethyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
31-11-3	Dimethyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
34-74-2	Di-n-butylphthalate	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
17-84-0	Di-n-octylphthalate	26 U	mg/kg	26	10/05/10	10/09/10 20:56	EPA 8270D
206-44-0	Fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
36-73-7	Fluorene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
118-74-1	Hexachlorobenzene (HCB)	26 U	mg/kg	26	10/05/10	10/09/10 20:56	EPA 8270D
37-68-3	Hexachlorobutadiene	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
67-72-1	Hexachloroethane	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
8-59-1	Isophorone	26 U	mg/kg	26	10/05/10 12:00	10/00/10	EPA 8270D
1-20-3	Naphthalene	2.6 U	mg/kg	2.6	10/05/10 12:00	100000	EPA 8270D
8-95-3	Nitrobenzene	26 U	mg/kg	26	10/05/10 12:00	10/00/10	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	26 U	mg/kg	26	10/05/10	10/00/10	EPA 8270D

Page 29 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Station ID: <u>HERC06</u> Lab ID: <u>E104009-08</u>

Matrix: Waste

CAS							
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
87-86-5	Pentachlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
85-01-8	Phenanthrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
108-95-2	Phenol	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
129-00-0	Pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/09/10 20:56	EPA 8270D
110-86-1	Pyridine	26 U	mg/kg	26	10/05/10 12:00	10/09/10 20:56	EPA 8270D
Tentatively	dentified Compounds:						31199
R4-6603	Dimethylisopropylphenanthrene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 20:56	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 20:56	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/09/10 20:56	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/09/10 20:56	EPA 8270D
R4-6501	Unidentified Compounds	6000 J	mg/kg		10/05/10 12:00	10/09/10 20:56	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Station ID: <u>HERC06</u> Lab ID: <u>E104009-08</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10	10/09/10	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
5-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10	10/09/10	EPA 8270D
37-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
10-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u> Station ID: <u>HERC07</u> Lab ID: <u>E104009-09</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	78	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
92-52-4	1,1-Biphenyl	330	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
20-83-2	2,4-Dichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
105-67-9	2,4-Dimethylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
51-28-5	2,4-Dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
121-14-2	2,4-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
606-20-2	2,6-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
91-58-7	2-Chloronaphthalene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
95-57-8	2-Chlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
91-57-6	2-Methylnaphthalene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
95-48-7	2-Methylphenol	17 J, Q-2	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
38-74-4	2-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
88-75-5	2-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
99-09-2	3-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
106-47-8	4-Chloroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
00-01-6	4-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
00-02-7	4-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
33-32-9	Acenaphthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
08-96-8	Acenaphthylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
8-86-2	Acetophenone	24 U	mg/kg	24	10/05/10 12:00	10/00/10	EPA 8270D
20-12-7	Anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
912-24-9	Atrazine	24 U	mg/kg	24	10/05/10 12:00	10/00/10	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u> Lab ID: <u>E104009-09</u>

Station ID: HERC07 Matrix: Waste

Date Collected: 9/28/10 15:25

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
56-55-3	Benzo(a)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
50-32-8	Benzo(a)pyrene	2,4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
5-68-7	Benzyl butyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
105-60-2	Caprolactam	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
36-74-8	Carbazole	2.4 U	mg/kg	2.4	10/05/10	10/09/10 21:31	EPA 8270D
218-01-9	Chrysene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
132-64-9	Dibenzofuran	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
34-66-2	Diethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
131-11-3	Dimethyl phthalate	24 U	mg/kg	24	10/05/10	10/09/10 21:31	EPA 8270D
84-74-2	Di-n-butylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
17-84-0	Di-n-octylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
206-44-0	Fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
36-73-7	Fluorene	2.4 U	mg/kg	2.4	10/05/10	1000/10	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	24 U	mg/kg	24	10/05/10 12:00	TOPOZO	EPA 8270D
37-68-3	Hexachlorobutadiene	24 U	mg/kg	24	10/05/10 12:00	10/00/10	EPA 8270D
7-47-4	Hexachlorocyclopentadiene (HCCP)	24 U	mg/kg	24	10/05/10 12:00	100000	EPA 8270D
7-72-1	Hexachloroethane	24 U	mg/kg	24	10/05/10 12:00	10/00/10	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	100000	EPA 8270D
8-59-1	Isophorone	24 U	mg/kg	24	10/05/10 12:00	10/00/10	EPA 8270D
1-20-3	Naphthalene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/00/10	EPA 8270D
8-95-3	Nitrobenzene	24 U	mg/kg	24	10/05/10	10/00/10	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	24 U	mg/kg	24	10/05/10 12:00	100000	EPA 8270D

Page 33 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u>

Lab ID: <u>E104009-09</u>

Station ID: <u>HERC07</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
87-86-5	Pentachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
85-01-8	Phenanthrene	2.4 U	mg/kg	2.4	10/05/10	10/09/10 21:31	EPA 8270D
108-95-2	Phenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
129-00-0	Pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 21:31	EPA 8270D
110-86-1	Pyridine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 21:31	EPA 8270D
Tentatively	Identified Compounds:						-
R4-6603	Dimethylisopropylphenanthrene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 21:31	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	600 NJ	mg/kg		10/05/10 12:00	10/09/10 21:31	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/09/10 21:31	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/09/10 21:31	EPA 8270D
R4-6501	Unidentified Compounds	5000 J	mg/kg		10/05/10 12:00	10/09/10 21:31	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u>

Lab ID: <u>E104009-09</u>

Station ID: HERC07

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
5-48-7	2-Methylphenol:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
18-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
67-72-1	Hexachloroethane:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
10-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u> Lab ID: <u>E104009-10</u>

Station ID: <u>HERC08</u> Matrix: Waste

Date Collected: 9/29/10 8:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
92-52-4	1,1-Biphenyl	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
120-83-2	2,4-Dichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
105-67-9	2,4-Dimethylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
51-28-5	2,4-Dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
121-14-2	2,4-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
606-20-2	2,6-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
91-58-7	2-Chloronaphthalene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
95-57-8	2-Chlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
91-57-6	2-Methylnaphthalene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
5-48-7	2-Methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
38-74-4	2-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
88-75-5	2-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
1-94-1	3,3'-Dichlorobenzidine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
99-09-2	3-Nitroaniline	24 U	mg/kg	24	10/05/10	10/09/10 22:41	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
06-47-8	4-Chloroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	24 U	mg/kg	- 24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
00-01-6	4-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
00-02-7	4-Nitrophenol	24 U	mg/kg	24	10/05/10	10/09/10 22:41	EPA 8270D
3-32-9	Acenaphthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
08-96-8	Acenaphthylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
8-86-2	Acetophenone	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
20-12-7	Anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
912-24-9	Atrazine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D

Page 36 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC08

Station ID: HERC08

Lab ID: <u>E104009-10</u>

Matrix: Waste

Date Collected: 9/29/10 8:50

CAS Number	Analyte	Results Qualifiers	Units	MRI,	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
56-55-3	Benzo(a)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
50-32-8	Benzo(a)pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2,4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
15-68-7	Benzyl butyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
105-60-2	Caprolactam	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
86-74-8	Carbazole	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
218-01-9	Chrysene	2.4 U	mg/kg	2.4	10/05/10	10/09/10 22:41	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
132-64-9	Dibenzofuran	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
84-66-2	Diethyl phthalate	24 U	mg/kg	24	10/05/10	10/09/10 22:41	EPA 8270D
131-11-3	Dimethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
84-74-2	Di-n-butylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
117-84-0	Di-n-octylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
206-44-0	Fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
36-73-7	Fluorene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
37-68-3	Hexachlorobutadiene	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
17-47-4	Hexachlorocyclopentadiene (HCCP)	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
57-72-1	Hexachloroethane	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
8-59-1	Isophorone	24 U	mg/kg	24	10/05/10 12:00	10/00/10	EPA 8270D
1-20-3	Naphthalene	2.4 U	mg/kg	2.4	10/05/10 12:00	YOMANA	EPA 8270D
8-95-3	Nitrobenzene	24 U	mg/kg	24	10/05/10	10/00/10	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	24 U	mg/kg	24	10/05/10 12:00	100000	EPA 8270D

Page 37 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC08

Lab ID: <u>E104009-10</u>

Station ID: HERC08

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Propured	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	24 U	mg/kg	24	10/05/10	10/09/10 22:41	EPA 8270D
87-86-5	Pentachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
35-01-8	Phenanthrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
108-95-2	Phenol	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
129-00-0	Pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/09/10 22:41	EPA 8270D
110-86-1	Pyridine	24 U	mg/kg	24	10/05/10 12:00	10/09/10 22:41	EPA 8270D
 Tentatively	Identified Compounds:	, ME					
R4-6558	Bis(methylethyl)biphenyl (TIC)	70 NJ	mg/kg		10/05/10 12:00	10/09/10 22:41	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	400 NJ	mg/kg		10/05/10 12:00	10/09/10 22:41	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/09/10 22:41	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/09/10 22:41	EPA 8270D
R4-6501	Unidentified Compounds	2000 J	mg/kg		10/05/10 12:00	10/09/10 22:41	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u>

Lab ID: <u>E104009-10</u>

Station ID: HERC08

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analysed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
5-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
67-72-1	Hexachloroethane:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol;	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
110-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units	MRŁ	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
92-52-4	1,1-Biphenyl	290	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	25 U	mg/kg	25	10/05/10	10/10/10 1:37	EPA 8270D
20-83-2	2,4-Dichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
105-67-9	2,4-Dimethylphenol	25 U	mg/kg	25	10/05/10	10/10/10 1:37	EPA 8270D
51-28-5	2,4-Dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
121-14-2	2,4-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
606-20-2	2,6-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
91-58-7	2-Chloronaphthalene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
95-57-8	2-Chlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
91-57-6	2-Methylnaphthalene	2.6	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
95-48-7	2-Methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
38-74-4	2-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
18-75-5	2-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
1-94-1	3,3'-Dichlorobenzidine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
99-09-2	3-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	25 U	mg/kg	25	10/05/10	10/10/10 1:37	EPA 8270D
06-47-8	4-Chloroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
00-01-6	4-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
00-02-7	4-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
3-32-9	Acenaphthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
08-96-8	Acenaphthylene	2.5 U	mg/kg	2.5	10/05/10 12:00	100000	EPA 8270D
8-86-2	Acetophenone	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
20-12-7	Anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	1000000	EPA 8270D
912-24-9	Atrazine	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D

Page 40 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Lab ID: <u>E104009-11</u>

Station ID: HERC09 Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analysed	Method
100-52-7	Benzaldehyde	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
56-55-3	Benzo(a)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
50-32-8	Benzo(a)pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
5-68-7	Benzyl butyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	25 U	mg/kg	25	10/05/10	10/10/10	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
105-60-2	Caprolactam	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
86-74-8	Carbazole	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
218-01-9	Chrysene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
132-64-9	Dibenzofuran	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
84-66-2	Diethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
131-11-3	Dimethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
84-74-2	Di-n-butylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
117-84-0	Di-n-octylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
206-44-0	Fluoranthene	6,8	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
36-73-7	Fluorene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
118-74-1	Hexachlorobenzene (HCB)	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	25 U	mg/kg	25	10/05/10 12:00	100000	EPA 8270D
57-72-1	Hexachloroethane	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
193-39-5	Indeno (1,2,3-cd) pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	INNAHA	EPA 8270D
78-59-1	Isophorone	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
1-20-3	Naphthalene	3.1	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
8-95-3	Nitrobenzene	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
521-64-7	n-Nitroso di-n-Propylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D

Page 41 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
87-86-5	Pentachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
85-01-8	Phenanthrene	3.1 J, QL-2	mg/kg	2.5	10/05/10 12:00	10/10/10 1:37	EPA 8270D
108-95-2	Phenol	7.2 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
129-00-0	Pyrene	3.5	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
110-86-1	Pyridine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 1:37	EPA 8270D
rentatively	Identified Compounds:						
R4-8000682	(Dimethylethyl)methylphenol (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-6531	Camphene (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10	EPA 8270D
R4-6506	Decahydrotrimethylmethylenemethanoazu lene (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	400 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/10/10	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-8000907	Menthene (TIC)	600 NJ	mg/kg		10/05/10 12:00	10/10/10	EPA 8270D
R4-6584	Methyl(methylethyl)benzene (TIC)	700 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/10/10	EPA 8270D
R4-8000906	Methyl(methylethyl)cyclohexene (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/10/10	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 1:37	EPA 8270D
R4-6501	Unidentified Compounds	1000 J	mg/kg		10/05/10	10/10/10	EPA 8270D

Page 42 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u>

Lab ID: <u>E104009-11</u>

Station ID: <u>HERC09</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5	0.10	10/05/10 9:44	10/09/10	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
5-48-7	2-Methylphenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
67-72-1	Hexachloroethane;	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
110-86-1	Pyridine:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Page 43 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Station ID: <u>HERC10</u> Lab ID: <u>E104009-12</u>

Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
92-52-4	1,1-Biphenyl	1600	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
20-83-2	2,4-Dichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
105-67-9	2,4-Dimethylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
51-28-5	2,4-Dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
121-14-2	2,4-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
606-20-2	2,6-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
91-58-7	2-Chloronaphthalene	25 U	mg/kg	25	10/05/10	10/10/10 2:12	EPA 8270D
95-57-8	2-Chlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
91-57-6	2-Methylnaphthalene	4.6	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
95-48-7	2-Methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
38-74-4	2-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
88-75-5	2-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
1-94-1	3,3'-Dichlorobenzidine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
9-09-2	3-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
01-55-3	4-Bromophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	25 U	mg/kg	25	10/05/10	10/10/10 2:12	EPA 8270D
106-47-8	4-Chloroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
00-01-6	4-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
00-02-7	4-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
3-32-9	Acenaphthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
08-96-8	Acenaphthylene	2.5 U	mg/kg	2.5	10/05/10 12:00	TOTAL	EPA 8270D
8-86-2	Acetophenone	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
20-12-7	Anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	100000	EPA 8270D
912-24-9	Atrazine	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D

Page 44 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Station ID: <u>HERC10</u> Lab ID: <u>E104009-12</u>

Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
56-55-3	Benzo(a)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
50-32-8	Benzo(a)pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
5-68-7	Benzyl butyl phthalate	25 U	mg/kg	25	10/05/10	10/10/10 2:12	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
105-60-2	Caprolactam	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
86-74-8	Carbazole	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
218-01-9	Chrysene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
32-64-9	Dibenzofuran	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
34-66-2	Diethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
31-11-3	Dimethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
4-74-2	Di-n-butylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
17-84-0	Di-n-octylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
206-44-0	Fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
6-73-7	Fluorene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
7-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
7-47-4	Hexachlorocyclopentadiene (HCCP)	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
7-72-1	Hexachloroethane	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
8-59-1	Isophorone	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
1-20-3	Naphthalene	6.7	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
8-95-3	Nitrobenzene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D

Page 45 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u>
Station ID: <u>HERC10</u>

Lab ID: <u>E104009-12</u>

Matrix: Waste

CAS							
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
87-86-5	Pentachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
85-01-8	Phenanthrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
108-95-2	Phenol	18 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
129-00-0	Pyrene	3.4	mg/kg	2.5	10/05/10 12:00	10/10/10 2:12	EPA 8270D
110-86-1	Pyridine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:12	EPA 8270D
Tentatively	dentified Compounds:						
R4-6552	(Menthenol)terpineol (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-6583	(Methylpropyl)benzene (TIC)	90 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-6531	Camphene (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-6584	Methyl(methylethyl)benzene (TIC)	7000 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	4000 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-6520	Pinene (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-8000466	Propylphenol (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 2:12	EPA 8270D
R4-6501	Unidentified Compounds	2000 J	mg/kg		10/05/10	10/10/10	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u>

Lab ID: <u>E104009-12</u>

Station ID: HERC10

Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10	EPA 8270D
)5-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
110-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Page 47 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>
Station ID: <u>HERC11</u>

Lab ID: <u>E104009-13</u>

Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	13 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
92-52-4	1,1-Biphenyl	480	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
20-83-2	2,4-Dichlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
105-67-9	2,4-Dimethylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
51-28-5	2,4-Dinitrophenol	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
121-14-2	2,4-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
606-20-2	2,6-Dinitrotoluene	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
91-58-7	2-Chloronaphthalene	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
95-57-8	2-Chlorophenol	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
91-57-6	2-Methylnaphthalene	2.6	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
95-48-7	2-Methylphenol	3.8 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
88-74-4	2-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
88-75-5	2-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
99-09-2	3-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
106-47-8	4-Chloroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
100-01-6	4-Nitroaniline	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
100-02-7	4-Nitrophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
33-32-9	Acenaphthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
208-96-8	Acenaphthylene ·	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
18-86-2	Acetophenone	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
20-12-7	Anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
1912-24-9	Atrazine	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D

Page 48 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>
Station ID: <u>HERC11</u>

Lab ID: <u>E104009-13</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
56-55-3	Benzo(a)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
50-32-8	Benzo(a)pyrene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10	EPA 8270D
5-68-7	Benzyl butyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
105-60-2	Caprolactam	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
86-74-8	Carbazole	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
218-01-9	Chrysene	2.5 U	mg/kg	2.5	10/05/10	10/10/10 2:48	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
132-64-9	Dibenzofuran	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
84-66-2	Diethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
131-11-3	Dimethyl phthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
34-74-2	Di-n-butylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
17-84-0	Di-n-octylphthalate	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
206-44-0	Fluoranthene	10	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
36-73-7	Fluorene	2.5 U	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
118-74-1	Hexachlorobenzene (HCB)	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/05/10	10/10/10	EPA 8270D
17-47-4	Hexachlorocyclopentadiene (HCCP)	25 U	mg/kg	25	10/05/10	10/10/10 2:48	EPA 8270D
67-72-1	Hexachloroethane	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.5 U	mg/kg	2.5	10/05/10	1000000	EPA 8270D
8-59-1	Isophorone	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
1-20-3	Naphthalene	3.3	mg/kg	2.5	10/05/10 12:00	TOWNER	EPA 8270D
8-95-3	Nitrobenzene	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
521-64-7	n-Nitroso di-n-Propylamine	25 U	mg/kg	25	10/05/10	1000000	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>

Lab ID: <u>E104009-13</u>

Station ID: <u>HERC11</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
87-86-5	Pentachlorophenol	25 U	mg/kg	25	10/05/10 12:00	10/10/10	EPA 8270D
85-01-8	Phenanthrene	5.0 J, QL-2	mg/kg	2.5	10/05/10 12:00	10/10/10 2:48	EPA 8270D
108-95-2	Phenol	6.2 J, Q-2	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
129-00-0	Pyrene	4.8	mg/kg	2.5	10/05/10	10/10/10 2:48	EPA 8270D
110-86-1	Pyridine	25 U	mg/kg	25	10/05/10 12:00	10/10/10 2:48	EPA 8270D
rentatively	dentified Compounds:						
R4-8000682	(Dimethylethyl)methylphenol (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-6531	Camphene (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	200 NJ	mg/kg		10/05/10	10/10/10 2:48	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-8000907	Menthene (TIC)	100 NJ	mg/kg		10/05/10	10/10/10 2:48	EPA 8270D
R4-6584	Methyl(methylethyl)benzene (TIC)	700 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-6520	Pinene (TIC)	100 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D
R4-6501	Unidentified Compounds	2000 J	mg/kg		10/05/10 12:00	10/10/10 2:48	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>

Lab ID: <u>E104009-13</u>

Station ID: <u>HERC11</u>

Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyte	Results Qualifiers	Units MR	L Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5	0.1) 10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5	0.1) 10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5	0.1	10/05/10 9:44	10/09/10	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5	0.10	10/05/10	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5	0.1	10/05/10	10/09/10 14:04	EPA 8270D
5-48-7	2-Methylphenol:	NA-5	0.10	10/05/10	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5	0.10	10/05/10	10/09/10 14:04	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5	0.10) 10/05/10 9:44	10/09/10 14:04	EPA 8270D
67-72-1	Hexachloroethane:	NA-5	0.10	10/05/10	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol:	NA-5	0.10	10/05/10	10/09/10 14:04	EPA 8270D
110-86-1	Pyridine:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Page 51 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: E104009-14

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	3.1 J, Q-2	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
92-52-4	1,1-Biphenyl	500	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	26 U	mg/kg	26	10/05/10	10/10/10 3:24	EPA 8270D
20-83-2	2,4-Dichlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
105-67-9	2,4-Dimethylphenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
51-28-5	2,4-Dinitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
121-14-2	2,4-Dinitrotoluene	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
606-20-2	2,6-Dinitrotoluene	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
91-58-7	2-Chloronaphthalene	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
95-57-8	2-Chlorophenol	26 U	mg/kg	26	10/05/10	10/10/10 3:24	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
91-57-6	2-Methylnaphthalene	3.5	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
95-48-7	2-Methylphenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
88-74-4	2-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
88-75-5	2-Nitrophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
91-94-1	3,3'-Dichlorobenzidine	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
99-09-2	3-Nitroaniline	26 U	mg/kg	26	10/05/10	10/10/10 3:24	EPA 8270D
101-55-3	4-Bromophenyl phenyl ether	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
106-47-8	4-Chloroaniline	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	26 U	mg/kg	26	10/05/10	10/10/10 3:24	EPA 8270D
100-01-6	4-Nitroaniline	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
100-02-7	4-Nitrophenol	26 U	mg/kg	26	10/05/10	10/10/10 3:24	EPA 8270D
33-32-9	Acenaphthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10	EPA 8270D
08-96-8	Acenaphthylene	2.6 U	mg/kg	2.6	10/05/10 12:00	100000	EPA 8270D
8-86-2	Acetophenone	26 U	mg/kg	26	10/05/10 12:00	10/10/10	EPA 8270D
20-12-7	Anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10	EPA 8270D
912-24-9	Atrazine	26 U	mg/kg	26	10/05/10 12:00	10/10/10	EPA 8270D

Page 52 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

CAS Number	Analyse	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	26 U	mg/kg	26	10/05/10 12:00	10/10/10	EPA 8270D
56-55-3	Benzo(a)anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
50-32-8	Benzo(a)pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
35-68-7	Benzyl butyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	26 U	mg/kg	26	10/05/10	10/10/10	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
105-60-2	Caprolactam	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
86-74-8	Carbazole	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
18-01-9	Chrysene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
3-70-3	Dibenz(a,h)anthracene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
32-64-9	Dibenzofuran	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
34-66-2	Diethyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
31-11-3	Dimethyl phthalate	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
4-74-2	Di-n-butylphthalate	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
17-84-0	Di-n-octylphthalate	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
206-44-0	Fluoranthene	9.5	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
6-73-7	Fluorene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
37-68-3	Hexachlorobutadiene	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
7-47-4	Hexachlorocyclopentadiene (HCCP)	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
7-72-1	Hexachloroethane	26 U	mg/kg	26	10/05/10 12:00	10/10/10	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.6 U	mg/kg	2.6	10/05/10 12:00	TOTATA	EPA 8270D
8-59-1	Isophorone	26 U	mg/kg	26	10/05/10 12:00	10/10/10	EPA 8270D
1-20-3	Naphthalene	3.9	mg/kg	2.6	10/05/10 12:00	10/10/10	EPA 8270D
8-95-3	Nitrobenzene	26 U	mg/kg	26	10/05/10 12:00	104040	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	26 U	mg/kg	26	10/05/10 12:00	TOMBINO	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u>

Lab ID: <u>E104009-14</u>

Station ID: <u>HERC12</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	26 U	mg/kg	26	10/05/10	10/10/10 3:24	EPA 8270D
87-86-5	Pentachlorophenol	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
35-01-8	Phenanthrene	2.6 U	mg/kg	2.6	10/05/10 12:00	10/10/10 3:24	EPA 8270D
08-95-2	Phenol	15 J, Q-2	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
29-00-0	Pyrene	2.6 U	mg/kg	2.6	10/05/10	10/10/10 3:24	EPA 8270D
110-86-1	Pyridine	26 U	mg/kg	26	10/05/10 12:00	10/10/10 3:24	EPA 8270D
rentatively	dentified Compounds:						
R4-6531	Camphene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	300 NJ	mg/kg	· · · · · · · · · · · · · · · · · · ·	10/05/10 12:00	10/10/10 3:24	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	500 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
14-6584	Methyl(methylethyl)benzene (TIC)	3000 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
4-8000897	Methyl(methylethyl)cyclohexane (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
4-8000906	Methyl(methylethyl)cyclohexene (TIC)	80 NJ	mg/kg		10/05/10 12:00	10/10/10	EPA 8270D
R4-6500	Petroleum Product:	N			10/05/10 12:00	10/10/10 3:24	EPA 8270D
4-8000466	Propylphenol (TIC)	300 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
4-8000901	Trimethylbicycloheptane (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 3:24	EPA 8270D
4-6501	Unidentified Compounds	1000 J	mg/kg		10/05/10	10/10/10	EPA 8270D

Page 54 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
5-48-7	2-Methylphenol:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-68-3	Hexachlorobutadiene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
57-72-1	Hexachloroethane:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
98-95-3	Nitrobenzene:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
37-86-5	Pentachlorophenol:	NA-5		0.10	10/05/10	10/09/10 14:04	EPA 8270D
110-86-1	Pyridine:	NA-5		0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC13-B
Station ID: HERC13
Matrix: Waste

Date Collected: 9/29/10 15:10

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol	18 J, Q-2	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
92-52-4	1,1-Biphenyl	1500	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
95-95-4	2,4,5-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
88-06-2	2,4,6-Trichlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
120-83-2	2,4-Dichlorophenol	24 U	mg/kg	24	10/05/10	10/10/10	EPA 8270D
105-67-9	2,4-Dimethylphenol	24 U	mg/kg	24	10/05/10	10/10/10 4:00	EPA 8270D
51-28-5	2,4-Dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
121-14-2	2,4-Dinitrotoluene	24 U	mg/kg	24	10/05/10	10/10/10 4:00	EPA 8270D
606-20-2	2,6-Dinitrotoluene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
91-58-7	2-Chloronaphthalene	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
95-57-8	2-Chlorophenol	24 U	mg/kg	24	10/05/10	10/10/10 4:00	EPA 8270D
534-52-1	2-Methyl-4,6-dinitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
91-57-6	2-Methylnaphthalene	4.1	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
95-48-7	2-Methylphenol	4.0 J, Q-2	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
88-74-4	2-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
38-75-5	2-Nitrophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
1-94-1	3,3'-Dichlorobenzidine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
99-09-2	3-Nitroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
01-55-3	4-Bromophenyl phenyl ether	24 U	mg/kg	24	10/05/10	10/10/10 4:00	EPA 8270D
59-50-7	4-Chloro-3-methylphenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
06-47-8	4-Chloroaniline	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
7005-72-3	4-Chlorophenyl phenyl ether	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
00-01-6	4-Nitroaniline	24 U	mg/kg	24	10/05/10	10/10/10	EPA 8270D
00-02-7	4-Nitrophenol	24 U	mg/kg	24	10/05/10	10/10/10	EPA 8270D
3-32-9	Acenaphthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
08-96-8	Acenaphthylene	2.4 U	mg/kg	2.4	10/05/10	10/10/10 4:00	EPA 8270D
8-86-2	Acetophenone	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
20-12-7	Anthracene	2.4 U	mg/kg	2.4	10/05/10	10/10/10	EPA 8270D
912-24-9	Atrazine	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D

Page 56 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

Date Collected: 9/29/10 15:10

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
100-52-7	Benzaldehyde	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
56-55-3	Benzo(a)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
50-32-8	Benzo(a)pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
205-99-2	Benzo(b)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
191-24-2	Benzo(g,h,i)perylene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
207-08-9	Benzo(k)fluoranthene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
5-68-7	Benzyl butyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
111-91-1	Bis(2-chloroethoxy)methane	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
111-44-4	bis(2-Chloroethyl) Ether	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
39638-32-9	Bis(2-chloroisopropyl) ether	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
117-81-7	Bis(2-ethylhexyl) phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
105-60-2	Caprolactam	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
86-74-8	Carbazole	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
218-01-9	Chrysene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
53-70-3	Dibenz(a,h)anthracene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
132-64-9	Dibenzofuran	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
84-66-2	Diethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
31-11-3	Dimethyl phthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
84-74-2	Di-n-butylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
117-84-0	Di-n-octylphthalate	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
206-44-0	Fluoranthene	7.0	mg/kg	2.4	10/05/10 12:00	TOMORIO	EPA 8270D
36-73-7	Fluorene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10	EPA 8270D
18-74-1	Hexachlorobenzene (HCB)	24 U	mg/kg	24	10/05/10 12:00	100000	EPA 8270D
37-68-3	Hexachlorobutadiene	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
77-47-4	Hexachlorocyclopentadiene (HCCP)	24 U	mg/kg	24	10/05/10 12:00	100000	EPA 8270D
57-72-1	Hexachloroethane	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D
93-39-5	Indeno (1,2,3-cd) pyrene	2.4 U	mg/kg	2.4	10/05/10 12:00	1000000	EPA 8270D
8-59-1	Isophorone	24 U	mg/kg	. 24	10/05/10 12:00	10/10/10	EPA 8270D
1-20-3	Naphthalene	5.2	mg/kg	2.4	10/05/10 12:00	10110110	EPA 8270D
8-95-3	Nitrobenzene	24 U	mg/kg	24	10/05/10 12:00	10110110	EPA 8270D
21-64-7	n-Nitroso di-n-Propylamine	24 U	mg/kg	24	10/05/10 12:00	10/10/10	EPA 8270D

Page 57 of 59 E104009 SVOA TCLPS FINAL 11/1/10 16:40

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse

Semi Volatile Organics

Project: 10-0629, Hercules Inc

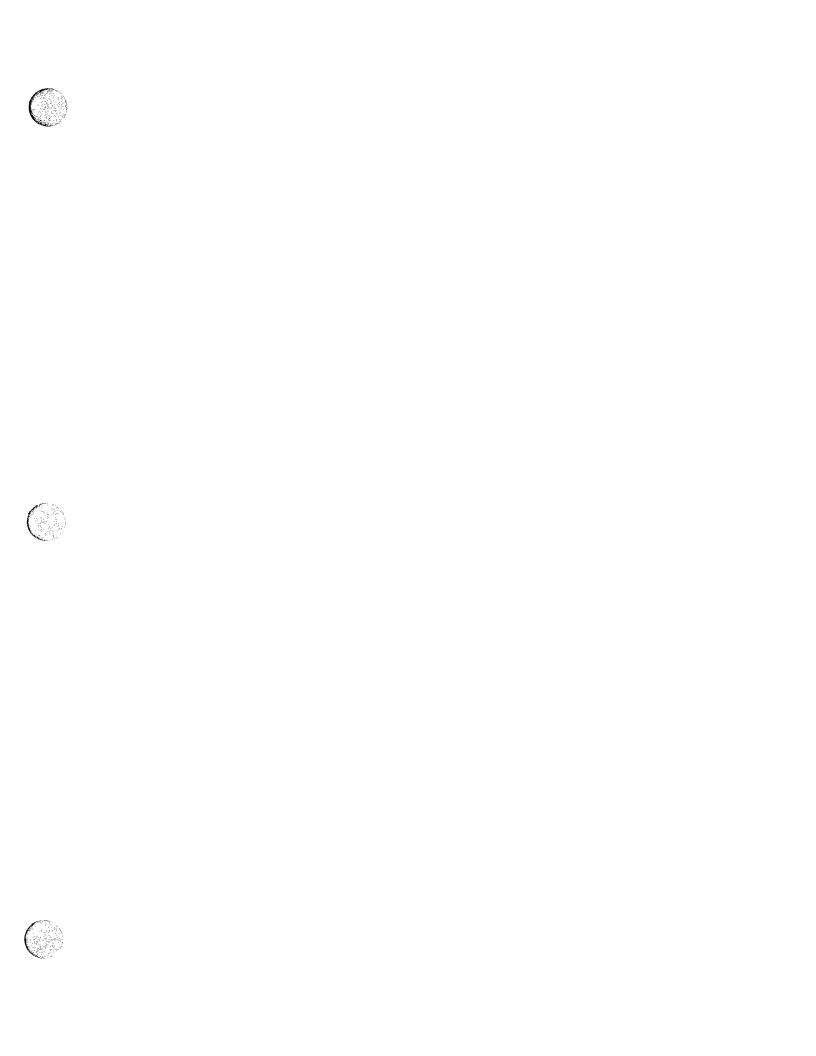
Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRE	Prepared	Analyzed	Method
122-39-4	n-Nitrosodiphenylamine/Diphenylamine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
87-86-5	Pentachlorophenol	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
85-01-8	Phenanthrene	2.4 U	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
108-95-2	Phenol	28	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
129-00-0	Pyrene	3.1	mg/kg	2.4	10/05/10 12:00	10/10/10 4:00	EPA 8270D
110-86-1	Pyridine	24 U	mg/kg	24	10/05/10 12:00	10/10/10 4:00	EPA 8270D
Tentatively	dentified Compounds:						PHO10 2
R4-6552	(Menthenol)terpineol (TIC)	400 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-6531	Camphene (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-6603	Dimethylisopropylphenanthrene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-8000535	Diphenyl ether (TIC)	5000 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-8000899	Hexahydrotetramethylmethanonaphthalene (TIC)	1000 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-6584	Methyl(methylethyl)benzene (TIC)	7000 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-8000897	Methyl(methylethyl)cyclohexane (TIC)	4000 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-8000906	Methyl(methylethyl)cyclohexene (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-6520	Pinene (TIC)	2000 NJ	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-8000466	Propylphenol (TIC)	200 NJ	mg/kg	,	10/05/10 12:00	10/10/10 4:00	EPA 8270D
R4-8000901	Trimethylbicycloheptane (TIC)	200 NJ	mg/kg		10/05/10 12:00	10/10/10	EPA 8270D
R4-6501	Unidentified Compounds	2000 J	mg/kg		10/05/10 12:00	10/10/10 4:00	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Janet Muse


TCLP SemiVolatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers (Inits MRL	Prepared	Analyzed	Method
1319-77-3	(3-and/or 4-)Methylphenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
58-90-2	2,3,4,6-Tetrachlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-95-4	2,4,5-Trichlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10	EPA 8270D
88-06-2	2,4,6-Trichlorophenol:	NA-5	0.10	10/05/10	10/09/10 14:04	EPA 8270D
121-14-2	2,4-Dinitrotoluene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
95-48-7	2-Methylphenol:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
118-74-1	Hexachlorobenzene (HCB):	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-68-3	Hexachlorobutadiene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
67-72-1	Hexachloroethane:	NA-5	0.10	10/05/10 9:44	10/09/10	EPA 8270D
98-95-3	Nitrobenzene:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D
87-86-5	Pentachlorophenol:	NA-5	0.10	10/05/10 9:44	10/09/10	EPA 8270D
10-86-1	Pyridine:	NA-5	0.10	10/05/10 9:44	10/09/10 14:04	EPA 8270D

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

November 8, 2010

4SESD-ASB

MEMORANDUM

SUBJECT:

FINAL Analytical Report

Project: 10-0629, Hercules Inc

Civil Enforcement

FROM:

Kristin Trapp

OCS Chemist

THRU:

Sallie Hale, Chief

ACI

ASB Organic Chemistry Section

TO:

Sharon Matthews

Attached are the final results for the analytical groups listed below. These analyses were performed in accordance with the Analytical Support Branch's (ASB) Laboratory Operations and Quality Assurance Manual (ASB LOQAM) found at www.epa.gov/region4/sesd/asbsop. Any unique project data quality objectives specified in writing by the data requestor have also been incorporated into the data unless otherwise noted in the Report Narrative. Chemistry data have been verified based on the ASB LOQAM specifications and may have been qualified if the applicable quality control criteria were not met. For a listing of specific data qualifiers and explanations, please refer to the Data Qualifier Definitions included in this report. The reported results are representative only of the samples as received by the laboratory.

Analyses Included in this report:

Method Used:

TCLP Volatiles (TCLPV)

Toxicity Characteristic Leaching Procedure Volatile organic compounds

EPA 1311 EPA 8260C

Volatile Organics (VOA)

Volatile organic compounds

EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Sample Disposal Policy

Because of the laboratory's limited space for long term sample storage, our policy is to dispose of samples on a periodic schedule. Please note that within 60 days of this memo, the original samples and all sample extracts and/or sample digestates will be disposed of in accordance with applicable regulations. The 60-day sample disposal policy does not apply to criminal samples which are held until the laboratory is notified by the criminal investigators that case development and litigation are complete.

These samples may be held in the laboratory's custody for a longer period of time if you have a special project need. If you wish for the laboratory to hold samples beyond the 60-day period, please contact our Sample Control Coordinator, Debbie Colquitt, by e-mail at Colquitt.Debbie@epa.gov, and provide a reason for holding samples beyond 60 days

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

SAMPLES INCLUDED IN THIS REPORT

Project: 10-0629, Hercules Inc

	Sample ID	Laboratory ID	Matrix	Date Collected	Date Received
	ERB01	E104009-01	Equipment Rinse Blank	9/23/10 13:30	10/1/10 8:35
	HERC01-A	E104009-03	Waste	9/28/10 10:10	10/1/10 8:35
	HERC02-B	E104009-04	Waste	9/28/10 10:55	10/1/10 8:35
	HERC03-B	E104009-05	Waste	9/28/10 13:15	10/1/10 8:35
	HERC04-B	E104009-06	Waste	9/28/10 13:50	10/1/10 8:35
	HERC05-A	E104009-07	Waste	9/28/10 14:05	10/1/10 8:35
	HERC06-B	E104009-08	Waste	9/28/10 14:55	10/1/10 8:35
	HERC07-B	E104009-09	Waste	9/28/10 15:25	10/1/10 8:35
ė.	HERC08	E104009-10	Waste	9/29/10 08:50	10/1/10 8:35
	HERC09-B	E104009-11	Waste	9/29/10 14:20	10/1/10 8:35
	HERC10-B	E104009-12	Waste	9/29/10 14:15	10/1/10 8:35
	HERC11-B	E104009-13	Waste	9/29/10 14:30	10/1/10 8:35
	HERC12-B	E104009-14	Waste	9/29/10 14:50	10/1/10 8:35
	HERC13-B	E104009-15	Waste	9/29/10 15:10	10/1/10 8:35

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

DATA QUALIFIER DEFINITIONS

U	The analyte was not detected at or above the reporting limit.
D-4	MRL elevated due to interferences.
H-8	Recommended analytical holding time exceeded
J	The identification of the analyte is acceptable; the reported value is an estimate.
NA-5	Not Analyzed. Cannot exceed TCLP regulatory levels based on Total Scan analyses.
NJ	Presumptive evidence that analyte is present; reported as a tentative identification with an estimated value.
Q-2	Result greater than MDL but less than MRL.
QC-1	Analyte concentration low in continuing calibration verification standard
QL-1	Laboratory Control Spike Recovery less than method control limits
QL-3	Laboratory Control Spike Precision outside method control limits
OR-1	MRL verification recovery less than lower control limits.

ACRONYMS AND ABBREVIATIONS

CAS	Chemical Abstracts Service

Note: Analytes with no known CAS identifiers have been assigned codes beginning with "E", the EPA ID as assigned by the EPA Substance Registry System (www.epa.gov/srs), or beginning with "R4-", a unique identifier assigned by the EPA Region 4 laboratory.

- MDL Method Detection Limit The minimum concentration of a substance (an analyte) that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero.
- MRL Minimum Reporting Limit Analyte concentration that corresponds to the lowest demonstrated level of acceptable quantitation. The MRL is sample-specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments.
- TIC Tentatively Identified Compound An analyte identified based on a match with the instrument software's mass spectral library. A calibration standard has not been analyzed to confirm the compound's identification or the estimated concentration reported.

Page 4 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>ERB01</u> Lab ID: <u>E104009-01</u>

Station ID: Matrix: Equipment Rinse Blank

Date Collected: 9/23/10 13:30

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
71-55-6	1,1,1-Trichloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
9-00-5	1,1,2-Trichloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
75-34-3	1,1-Dichloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
563-58-6	1,1-Dichloropropene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
96-18-4	1,2,3-Trichloropropane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
95-50-1	1,2-Dichlorobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
107-06-2	1,2-Dichloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
78-87-5	1,2-Dichloropropane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
541-73-1	1,3-Dichlorobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
42-28-9	1,3-Dichloropropane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
06-46-7	1,4-Dichlorobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
94-20-7	2,2-Dichloropropane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
7-64-1	Acetone	4.0 U	ug/L	4.0	10/04/10	10/04/10	EPA 8260C
1-43-2	Benzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
08-86-1	Bromobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
4-97-5	Bromochloromethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
5-27-4	Bromodichloromethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
5-25-2	Bromoform	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10	EPA 8260C

Page 5 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>ERB01</u>

Station ID:

Lab ID: <u>E104009-01</u>

Matrix: Equipment Rinse Blank

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	2.0 U	ug/L	2.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
75-15-0	Carbon disulfide	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
56-23-5	Carbon Tetrachloride	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
108-90-7	Chlorobenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
75-00-3	Chloroethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
67-66-3	Chloroform	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
74-87-3	Chloromethane	0.50 U, J, QC-1	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
110-82-7	Cyclohexane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
124-48-1	Dibromochloromethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
74-95-3	Dibromomethane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	0.50 U, J, QC-1	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
100-41-4	Ethyl Benzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
37-68-3	Hexachlorobutadiene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
98-82-8	Isopropylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
79-20-9	Methyl Acetate	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
591-78-6	Methyl Butyl Ketone	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
18-93-3	Methyl Ethyl Ketone	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
08-10-1	Methyl Isobutyl Ketone	1.0 U	ug/L	1.0	10/04/10 9:32	10/04/10 12:10	EPA 8260C
634-04-4	Methyl T-Butyl Ether (MTBE)	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
08-87-2	Methylcyclohexane	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
5-09-2	Methylene Chloride	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
04-51-8	n-Butylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
03-65-1	n-Propylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
5-49-8	o-Chlorotoluene	0.50 U	ug/L	0.50	10/04/10 9:32	100100	EPA 8260C
5-47-6	o-Xylene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
06-43-4	p-Chlorotoluene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
9-87-6	p-Isopropyltoluene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
35-98-8	sec-Butylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
00-42-5	Styrene	2.0 U	ug/L	2.0	10/04/10 9:32	MARAGO	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Lab ID: <u>E104009-01</u>

Station ID:

Matrix: Equipment Rinse Blank

Date Collected: 9/23/10 13:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
108-88-3	Toluene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	0.50 U, J, QL-1	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.50 U	ug/L	0.50	10/04/10	10/04/10	EPA 8260C
15-69-4	Trichlorofluoromethane (Freon 11)	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10	EPA 8260C
75-01-4	Vinyl chloride	0.50 U	ug/L	0.50	10/04/10 9:32	10/04/10 12:10	EPA 8260C
Tentatively	ldentified Compounds:			7			
R4-0000	Tentatively Identified Compounds	10 U	ug/L	10	10/04/10 9:32	10/04/10 12:10	EPA 8260C

Page 7 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Station ID:

Lab ID: <u>E104009-01</u>

Matrix: Equipment Rinse Blank

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
107-06-2	1,2-Dichloroethane:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
106-46-7	1,4-Dichlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
71-43-2	Benzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
66-23-5	Carbon Tetrachloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
08-90-7	Chlorobenzene:	NA-5		0.00050	10/13/10	10/13/10	EPA 8260C
7-66-3	Chloroform:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
7-68-3	Hexachlorobutadiene:	NA-5	*	0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
8-93-3	Methyl Ethyl Ketone:	NA-5		0.0010	10/13/10 15:00	10/13/10 15:00	EPA 8260C
27-18-4	Tetrachloroethene (Tetrachloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
9-01-6	Trichloroethene (Trichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
5-01-4	Vinyl chloride:	NA-5		0.00050	10/13/10 15:00	10/12/10	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u> Station ID: <u>HERC01</u> Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Number	Analyse	Results Qualifiers	Unites	MRL	Property	Analyzed	Mathod
R4-7156	(m- and/or p-)Xylene	5.1 J, Q-2	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
71-55-6	1,1,1-Trichloroethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
9-00-5	1,1,2-Trichloroethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
75-34-3	1,1-Dichloroethane	9.8 U, J, QL-1	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
563-58-6	1,1-Dichloropropene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
96-18-4	1,2,3-Trichloropropane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	3.9 J, Q-2, QR-1	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	20 U	mg/kg	20	10/06/10 12:10	10/07/10 15:08	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
95-50-1	1,2-Dichlorobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
07-06-2	1,2-Dichloroethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
78-87-5	1,2-Dichloropropane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
08-67-8	1,3,5-Trimethylbenzene	9.8 U	mg/kg	9.8	10/06/10	10/07/10	EPA 8260C
641-73-1	1,3-Dichlorobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
42-28-9	1,3-Dichloropropane	9.8 U	mg/kg	9.8	10/06/10	10/07/10	EPA 8260C
06-46-7	1,4-Dichlorobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
94-20-7	2,2-Dichloropropane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
7-64-1	Acetone	78 U	mg/kg	78	10/06/10 12:10	10/07/10 15:08	EPA 8260C
1-43-2	Benzene	18	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
08-86-1	Bromobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/02/10	EPA 8260C
4-97-5	Bromochloromethane	9.8 U, J, QL-1	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
5-27-4	Bromodichloromethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
5-25-2	Bromoform	20 U	mg/kg	20	10/06/10	100000	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u> Station ID: <u>HERC01</u> Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	39 U	mg/kg	39	10/06/10 12:10	10/07/10 15:08	EPA 8260C
75-15-0	Carbon disulfide	5.3 J, Q-2	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
56-23-5	Carbon Tetrachloride	9.8 U	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
108-90-7	Chlorobenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
75-00-3	Chloroethane	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
67-66-3	Chloroform	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
74-87-3	Chloromethane	9.8 U	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	9.8 U	mg/kg	9.8	10/06/10	10/07/10	EPA 8260C
110-82-7	Cyclohexane	110	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
124-48-1	Dibromochloromethane	9.8 U	mg/kg	9.8	10/06/10	10/07/10	EPA 8260C
74-95-3	Dibromomethane	9.8 U, J, QL-1	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
100-41-4	Ethyl Benzene	2.4 J, Q-2	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
37-68-3	Hexachlorobutadiene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
98-82-8	Isopropylbenzene	16 U, D-4	mg/kg	16	10/06/10 12:10	10/07/10 15:08	EPA 8260C
79-20-9	Methyl Acetate	20 U	mg/kg	20	10/06/10 12:10	10/07/10 15:08	EPA 8260C
591-78-6	Methyl Butyl Ketone	20 U	mg/kg	20	10/06/10	10/07/10 15:08	EPA 8260C
18-93-3	Methyl Ethyl Ketone	20 U	mg/kg	20	10/06/10	10/07/10 15:08	EPA 8260C
08-10-1	Methyl Isobutyl Ketone	20 U	mg/kg	20	10/06/10 12:10	10/07/10 15:08	EPA 8260C
634-04-4	Methyl T-Butyl Ether (MTBE)	9.8 U	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
08-87-2	Methylcyclohexane	6.9 J, Q-2	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
5-09-2	Methylene Chloride	9.8 U	mg/kg	9.8	10/06/10	10107/10	EPA 8260C
04-51-8	n-Butylbenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
03-65-1	n-Propylbenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	1000000	EPA 8260C
5-49-8	o-Chlorotoluene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
5-47-6	o-Xylene	9.8 U	mg/kg	9.8	10/06/10	10.00000	EPA 8260C
06-43-4	p-Chlorotoluene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
9-87-6	p-Isopropyltoluene	1100	mg/kg	9.8	10/06/10 12:10	100000	EPA 8260C
35-98-8	sec-Butylbenzene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10	EPA 8260C
00-42-5	Styrene	39 U	mg/kg	39	10/06/10	10.0770	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u>

Station ID: <u>HERC01</u>

Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	9.8 U	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
108-88-3	Toluene	7100	mg/kg	49	10/06/10	10/08/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	9.8 U	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
5-69-4	Trichlorofluoromethane (Freon 11)	9.8 U	mg/kg	9.8	10/06/10	10/07/10 15:08	EPA 8260C
75-01-4	Vinyl chloride	9.8 U	mg/kg	9.8	10/06/10 12:10	10/07/10 15:08	EPA 8260C
Fentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	200 U	mg/kg	200	10/06/10 12:10	10/07/10 15:08	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u> Station ID: <u>HERC01</u> Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
107-06-2	1,2-Dichloroethane	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
71-43-2	Benzene	0.21	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
56-23-5	Carbon Tetrachloride	0.10 U	mg/L	0.10	10/13/10	10/13/10 15:23	EPA 8260C
108-90-7	Chlorobenzene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
67-66-3	Chloroform	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
87-68-3	Hexachlorobutadiene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.20 U	mg/L	0.20	10/13/10	10/13/10 15:23	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.10 U	mg/L	0.10	10/13/10	10/13/10 15:23	EPA 8260C
75-01-4	Vinyl chloride	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 15:23	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u> Lab ID: <u>E104009-04</u>

Station ID: <u>HERC02</u> Matrix: Waste

Date Collected: 9/28/10 10:55

CAS Number	Analyse	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
71-55-6	1,1,1-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
79-00-5	1,1,2-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
75-34-3	1,1-Dichloroethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
563-58-6	1,1-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
96-18-4	1,2,3-Trichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	7.0 J, Q-2, QR-1	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	50 U	mg/kg	50	10/06/10 12:10	10/07/10	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	25 U	mg/kg	25	10/06/10	10/07/10 15:34	EPA 8260C
95-50-1	1,2-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
107-06-2	1,2-Dichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
78-87-5	1,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	25 U	mg/kg	25	10/06/10	10/07/10 15:34	EPA 8260C
541-73-1	1,3-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
142-28-9	1,3-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
106-46-7	1,4-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
594-20-7	2,2-Dichloropropane	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
67-64-1	Acetone	200 U	mg/kg	200	10/06/10 12:10	10/07/10	EPA 8260C
71-43-2	Benzene	37	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
08-86-1	Bromobenzene	25 U	mg/kg	25	10/06/10	10/02/10	EPA 8260C
4-97-5	Bromochloromethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	IMPORTA	EPA 8260C
5-27-4	Bromodichloromethane	25 U	mg/kg	25	10/06/10 12:10	100700	EPA 8260C
5-25-2	Bromoform	50 U	mg/kg	50	10/06/10	10/07/10	EPA 8260C

Page 13 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u>

Station ID: <u>HERC02</u>

Matrix: Waste

Lab ID: <u>E104009-04</u>

Date Collected: 9/28/10 10:55

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	100 U	mg/kg	100	10/06/10 12:10	10/07/10 15:34	EPA 8260C
75-15-0	Carbon disulfide	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
56-23-5	Carbon Tetrachloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
108-90-7	Chlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
75-00-3	Chloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
67-66-3	Chloroform	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
/4-87-3	Chloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
110-82-7	Cyclohexane	190	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
124-48-1	Dibromochloromethane	25 U	mg/kg	25	10/06/10	10/07/10 15:34	EPA 8260C
74-95-3	Dibromomethane	25 U, J, QL-1	mg/kg	25	10/06/10	10/07/10	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	25 U	mg/kg	25	10/06/10	10/07/10 15:34	EPA 8260C
100-41-4	Ethyl Benzene	6.5 J, Q-2	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
98-82-8	Isopropylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
79-20-9	Methyl Acetate	50 U	mg/kg	50	10/06/10 12:10	10/07/10 15:34	EPA 8260C
591-78-6	Methyl Butyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 15:34	EPA 8260C
78-93-3	Methyl Ethyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 15:34	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 15:34	EPA 8260C
634-04-4	Methyl T-Butyl Ether (MTBE)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
08-87-2	Methylcyclohexane	17 J, Q-2	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
75-09-2	Methylene Chloride	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
04-51-8	n-Butylbenzene	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
03-65-1	n-Propylbenzene	25 U	mg/kg	25	10/06/10	10/07/10 15:34	EPA 8260C
5-49-8	o-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
5-47-6	o-Xylene	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
06-43-4	p-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
9-87-6	p-Isopropyltoluene	1700	mg/kg	25	10/06/10 12:10	100200	EPA 8260C
35-98-8	sec-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
00-42-5	Styrene	100 U	mg/kg	100	10/06/10	13,34	EPA 8260C

Page 14 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: $\underline{HERC02-B}$

Station ID: <u>HERC02</u>

Lab ID: <u>E104009-04</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
108-88-3	Toluene	16000	mg/kg	120	10/06/10	10/08/10 13:36	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
5-69-4	Trichlorofluoromethane (Freon 11)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
75-01-4	Vinyl chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 15:34	EPA 8260C
Tentatively	Identified Compounds:						*****
R4-0000	Tentatively Identified Compounds	500 U	mg/kg	500	10/06/10 12:10	10/07/10	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629
Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u> Station ID: <u>HERC02</u> Lab ID: <u>E104009-04</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
107-06-2	1,2-Dichloroethane	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
71-43-2	Benzene	0.62 J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10	EPA 8260C
56-23-5	Carbon Tetrachloride	0.12 U, J, H-8, QL-3	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
108-90-7	Chlorobenzene	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
67-66-3	Chloroform	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
87-68-3	Hexachlorobutadiene	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.25 U, J, H-8	mg/L	0.25	10/21/10	10/21/10 18:30	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.12 U, J, H-8	mg/L	0.12	10/21/10	10/21/10 18:30	EPA 8260C
75-01-4	Vinyl chloride	0.12 U, J, H-8	mg/L	0.12	10/21/10 15:00	10/21/10 18:30	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u> Station ID: <u>HERC03</u> Lab ID: <u>E104009-05</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	0.76 J, Q-2	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10	EPA 8260C
71-55-6	1,1,1-Trichloroethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
9-00-5	1,1,2-Trichloroethane	0.97 U	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
75-34-3	1,1-Dichloroethane	0.97 U, J, QL-1	mg/kg	0.97	10/06/10	10/08/10	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
563-58-6	1,1-Dichloropropene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
96-18-4	1,2,3-Trichloropropane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	2.1	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	1.9 U	mg/kg	1.9	10/06/10 12:10	10/08/10 16:38	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	0.97 U	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
95-50-1	1,2-Dichlorobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
107-06-2	1,2-Dichloroethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
78-87-5	1,2-Dichloropropane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
541-73-1	1,3-Dichlorobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
142-28-9	1,3-Dichloropropane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
06-46-7	1,4-Dichlorobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
594-20-7	2,2-Dichloropropane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
67-64-1	Acetone	7.8 U	mg/kg	7.8	10/06/10 12:10	10/08/10	EPA 8260C
1-43-2	Benzene	3.4	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
08-86-1	Bromobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
4-97-5	Bromochloromethane	0.97 U, J, QL-1	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
5-27-4	Bromodichloromethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
5-25-2	Bromoform	1.9 U	mg/kg	1.9	10/06/10	10/08/10	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u> Lab ID: <u>E104009-05</u>

Station ID: <u>HERC03</u> Matrix: Waste

Date Collected: 9/28/10 13:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	39 U	mg/kg	39	10/06/10 12:10	10/08/10 16:38	EPA 8260C
75-15-0	Carbon disulfide	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
56-23-5	Carbon Tetrachloride	0.97 U	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
108-90-7	Chlorobenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
75-00-3	Chloroethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
67-66-3	Chloroform	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
4-87-3	Chloromethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	0.97 U	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
110-82-7	Cyclohexane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
124-48-1	Dibromochloromethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10	EPA 8260C
74-95-3	Dibromomethane	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	0.97 U	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
100-41-4	Ethyl Benzene	0.62 J, Q-2	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
87-68-3	Hexachlorobutadiene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
98-82-8	Isopropylbenzene	3.9 U, D-4	mg/kg	3.9	10/06/10	10/08/10	EPA 8260C
79-20-9	Methyl Acetate	0.72 J, Q-2	mg/kg	1.9	10/06/10 12:10	10/08/10	EPA 8260C
591-78-6	Methyl Butyl Ketone	1.9 U	mg/kg	1.9	10/06/10 12:10	10/08/10 16:38	EPA 8260C
18-93-3	Methyl Ethyl Ketone	1.9 U	mg/kg	1.9	10/06/10 12:10	10/08/10 16:38	EPA 8260C
08-10-1	Methyl Isobutyl Ketone	1.9 U	mg/kg	1.9	10/06/10	10/08/10 16:38	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
08-87-2	Methylcyclohexane	8.6	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
75-09-2	Methylene Chloride	0.97 U	mg/kg	0.97	10/06/10	10/08/10	EPA 8260C
04-51-8	n-Butylbenzene	1.2	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
03-65-1	n-Propylbenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
95-49-8	o-Chlorotoluene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
5-47-6	o-Xylene	0.50 J, Q-2	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
06-43-4	p-Chlorotoluene	0.97 U	mg/kg	0.97	10/06/10	10/08/10	EPA 8260C
9-87-6	p-Isopropyltoluene	420	mg/kg	9.7	10/06/10	10/07/10 14:42	EPA 8260C
35-98-8	sec-Butylbenzene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/00/10	EPA 8260C
00-42-5	Styrene	39 U	mg/kg	39	10/06/10	IOMORO -	EPA 8260C

Page 18 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u> Station ID: <u>HERC03</u> Lab ID: <u>E104009-05</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	1.4	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.97 U	mg/kg	0.97	10/06/10	10/08/10	EPA 8260C
108-88-3	Toluene	0.82 J, Q-2	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	0.97 U	mg/kg	0.97	10/06/10	10/08/10 16:38	EPA 8260C
75-01-4	Vinyl chloride	0.97 U	mg/kg	0.97	10/06/10 12:10	10/08/10 16:38	EPA 8260C
Γentatively	dentified Compounds:				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
R4-8000739	Dimethyloctane (TIC)	40 NJ	mg/kg		10/06/10 12:10	10/08/10 16:38	EPA 8260C
R4-8000896	Ethylmethylcyclohexane (TIC)	20 NJ	mg/kg		10/06/10 12:10	10/08/10 16:38	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u> Station ID: <u>HERC03</u> Lab ID: <u>E104009-05</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
107-06-2	1,2-Dichloroethane:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
106-46-7	1,4-Dichlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
71-43-2	Benzene;	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
56-23-5	Carbon Tetrachloride;	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
08-90-7	Chlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
67-66-3	Chloroform:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
37-68-3	Hexachlorobutadiene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
78-93-3	Methyl Ethyl Ketone:	NA-5		0.0010	10/13/10 15:00	10/13/10 15:00	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene):	NA-5		0.00050	10/13/10	10/13/10 15:00	EPA 8260C
75-01-4	Vinyl chloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u>
Station ID: <u>HERC04</u>

Lab ID: <u>E104009-06</u>

Matrix: Waste

Date Collected: 9/28/10 13:50

CAS Number	Analyse	Results Qualifiers	Units	MRL	Propared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	5.8 J, Q-2	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
71-55-6	1,1,1-Trichloroethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
9-00-5	1,1,2-Trichloroethane	10 U	mg/kg	10	10/06/10	10/07/10 16:26	EPA 8260C
75-34-3	1,1-Dichloroethane	10 U, J, QL-1	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
563-58-6	1,1-Dichloropropene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
96-18-4	1,2,3-Trichloropropane	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	4.6 J, Q-2, QR-1	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	20 U	mg/kg	20	10/06/10 12:10	10/07/10 16:26	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	10 U	mg/kg	10	10/06/10	10/07/10 16:26	EPA 8260C
95-50-1	1,2-Dichlorobenzene	25	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
107-06-2	1,2-Dichloroethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
78-87-5	1,2-Dichloropropane	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
08-67-8	1,3,5-Trimethylbenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
541-73-1	1,3-Dichlorobenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
42-28-9	1,3-Dichloropropane	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
06-46-7	1,4-Dichlorobenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
94-20-7	2,2-Dichloropropane	10 U	mg/kg	10	10/06/10	10/07/10 16:26	EPA 8260C
7-64-1	Acetone	80 U	mg/kg	80	10/06/10 12:10	10/07/10 16:26	EPA 8260C
1-43-2	Benzene	19	mg/kg	10	10/06/10 12:10	10/02/10	EPA 8260C
08-86-1	Bromobenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
4-97-5	Bromochloromethane	10 U, J, QL-1	mg/kg	10	10/06/10	10/07/10	EPA 8260C
5-27-4	Bromodichloromethane	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
5-25-2	Bromoform	20 U	mg/kg	20	10/06/10	10/07/10	EPA 8260C

Page 21 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u> Station ID: <u>HERC04</u> Lab ID: <u>E104009-06</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	40 U	mg/kg	40	10/06/10	10/07/10 16:26	EPA 8260C
75-15-0	Carbon disulfide	5.6 J, Q-2	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
56-23-5	Carbon Tetrachloride	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
108-90-7	Chlorobenzene	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
75-00-3	Chloroethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
67-66-3	Chloroform	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
74-87-3	Chloromethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	10 U	mg/kg	10	10/06/10	16:26 10/07/10 16:26	EPA 8260C
110-82-7	Cyclohexane	910	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
124-48-1	Dibromochloromethane	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
74-95-3	Dibromomethane	10 U, J, QL-1	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
00-41-4	Ethyl Benzene	2.2 J, Q-2	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
37-68-3	Hexachlorobutadiene	10 U	mg/kg	10	10/06/10	10/07/10 16:26	EPA 8260C
98-82-8	Isopropylbenzene	44 U, D-4	mg/kg	44	10/06/10	10/07/10 16:26	EPA 8260C
79-20-9	Methyl Acetate	20 U	mg/kg	20	10/06/10	10/07/10	EPA 8260C
591-78-6	Methyl Butyl Ketone	20 U	mg/kg	20	10/06/10 12:10	10/07/10 16:26	EPA 8260C
78-93-3	Methyl Ethyl Ketone	20 U	mg/kg	20	10/06/10	10/07/10 16:26	EPA 8260C
08-10-1	Methyl Isobutyl Ketone	20 U	mg/kg	20	10/06/10	10/07/10	EPA 8260C
634-04-4	Methyl T-Butyl Ether (MTBE)	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
08-87-2	Methylcyclohexane	20	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
75-09-2	Methylene Chloride	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
04-51-8	n-Butylbenzene	10 U	mg/kg	10	10/06/10	10/07/10 16:26	EPA 8260C
03-65-1	n-Propylbenzene	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
5-49-8	o-Chlorotoluene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
5-47-6	o-Xylene	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
06-43-4	p-Chlorotoluene	10 U	mg/kg	10	10/06/10	10/02/10	EPA 8260C
9-87-6	p-Isopropyltoluene	3500	mg/kg	50	10/06/10	10.20	EPA 8260C
35-98-8	sec-Butylbenzene	10 U	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
00-42-5	Styrene	40 U	mg/kg	40	10/06/10	10.20	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u> Station ID: <u>HERC04</u> Lab ID: <u>E104009-06</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL.	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	10 U	mg/kg	10	10/06/10	10/07/10 16:26	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
108-88-3	Toluene	3000	mg/kg	50	10/06/10 12:10	10/08/10 14:28	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	10 U	mg/kg	10	10/06/10	10/07/10	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	10 U	mg/kg	10	10/06/10 12:10	10/07/10 16:26	EPA 8260C
75-01-4	Vinyl chloride	10 U	mg/kg	10	10/06/10 12:10	16/07/10 16:26	EPA 8260C
Γentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	200 U	mg/kg	200	10/06/10 12:10	10/07/10 16:26	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u> Station ID: <u>HERC04</u> Lab ID: <u>E104009-06</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
107-06-2	1,2-Dichloroethane	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10	EPA 8260C
71-43-2	Benzene	0.22	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
56-23-5	Carbon Tetrachloride	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
108-90-7	Chlorobenzene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
67-66-3	Chloroform	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
87-68-3	Hexachlorobutadiene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.20 U	mg/L	0.20	10/13/10 15:00	10/13/10	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C
75-01-4	Vinyl chloride	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:19	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629
Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Station ID: <u>HERC05</u> Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	4.6 J, Q-2	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
71-55-6	1,1,1-Trichloroethane	9.9 U	mg/kg	9.9	10/06/10	10/07/10 16:52	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
79-00-5	1,1,2-Trichloroethane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
75-34-3	1,1-Dichloroethane	9.9 U. J. QL-1	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
563-58-6	1,1-Dichloropropene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
96-18-4	1,2,3-Trichloropropane	9.9 U	mg/kg	9.9	10/06/10	10/07/10 16:52	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	4.0 J, Q-2, QR-1	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	20 U	mg/kg	20	10/06/10 12:10	10/07/10 16:52	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
95-50-1	1,2-Dichlorobenzene	6.3 J, Q-2	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
107-06-2	1,2-Dichloroethane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
78-87-5	1,2-Dichloropropane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
541-73-1	1,3-Dichlorobenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
142-28-9	1,3-Dichloropropane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10	EPA 8260C
06-46-7	1,4-Dichlorobenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
594-20-7	2,2-Dichloropropane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
67-64-1	Acetone	79 U	mg/kg	79	10/06/10 12:10	10/07/10 16:52	EPA 8260C
11-43-2	Benzene	14	mg/kg	9.9	10/06/10	10/07/10 16:52	EPA 8260C
08-86-1	Bromobenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
74-97-5	Bromochloromethane	9.9 U, J, QL-1	mg/kg	9.9	10/06/10	10/07/10 16:52	EPA 8260C
5-27-4	Bromodichloromethane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10	EPA 8260C
5-25-2	Bromoform	20 U	mg/kg	20	10/06/10	100000	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Station ID: <u>HERC05</u> Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	40 U	mg/kg	40	10/06/10 12:10	10/07/10 16:52	EPA 8260C
75-15-0	Carbon disulfide	3.6 J, Q-2	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
56-23-5	Carbon Tetrachloride	9,9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
108-90-7	Chlorobenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
75-00-3	Chloroethane	9,9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
67-66-3	Chloroform	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
4-87-3	Chloromethane	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
110-82-7	Cyclohexane	420	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
124-48-1	Dibromochloromethane	9.9 U	mg/kg	9.9	10/06/10	10/07/10 16:52	EPA 8260C
74-95-3	Dibromomethane	9.9 U, J, QL-1	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
100-41-4	Ethyl Benzene	2.6 J, Q-2	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
87-68-3	Hexachlorobutadiene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
98-82-8	Isopropylbenzene	28 U, D-4	mg/kg	28	10/06/10 12:10	10/07/10 16:52	EPA 8260C
79-20-9	Methyl Acetate	20 U	mg/kg	20	10/06/10 12:10	10/07/10 16:52	EPA 8260C
591-78-6	Methyl Butyl Ketone	20 U	mg/kg	20	10/06/10	10/07/10 16:52	EPA 8260C
78-93-3	Methyl Ethyl Ketone	20 U	mg/kg	20	10/06/10 12:10	10/07/10 16:52	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	4.6 J, Q-2	mg/kg	20	10/06/10 12:10	10/07/10 16:52	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
08-87-2	Methylcyclohexane	22	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
75-09-2	Methylene Chloride	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
104-51-8	n-Butylbenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
103-65-1	n-Propylbenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
95-49-8	o-Chlorotoluene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
5-47-6	o-Xylene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
06-43-4	p-Chlorotoluene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10	EPA 8260C
9-87-6	p-Isopropyltoluene	3500	mg/kg	50	10/06/10 12:10	10/08/10 14:54	EPA 8260C
35-98-8	sec-Butylbenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10001110	EPA 8260C
00-42-5	Styrene	40 U	mg/kg	40	10/06/10	100000	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Station ID: <u>HERC05</u> Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
108-88-3	Toluene	5300	mg/kg	50	10/06/10	10/08/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
5-69-4	Trichlorofluoromethane (Freon 11)	9.9 U	mg/kg	9.9	10/06/10	10/07/10 16:52	EPA 8260C
75-01-4	Vinyl chloride	9.9 U	mg/kg	9.9	10/06/10 12:10	10/07/10 16:52	EPA 8260C
entatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	200 U	mg/kg	200	10/06/10 12:10	10/07/10 16:52	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Station ID: <u>HERC05</u> Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
107-06-2	1,2-Dichloroethane	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
71-43-2	Benzene	0.23	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
56-23-5	Carbon Tetrachloride	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
08-90-7	Chlorobenzene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
67-66-3	Chloroform	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
87-68-3	Hexachlorobutadiene	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.20 U	mg/L	0.20	10/13/10 15:00	10/13/10 16:45	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C
75-01-4	Vinyl chloride	0.10 U	mg/L	0.10	10/13/10 15:00	10/13/10 16:45	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Station ID: <u>HERC06</u> Lab ID: <u>E104009-08</u>

Matrix: Waste

Date Collected: 9/28/10 14:55

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
71-55-6	1,1,1-Trichloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
9-00-5	1,1,2-Trichloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-34-3	1,1-Dichloroethane	1.0 U, J, QL-1	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
563-58-6	1,1-Dichloropropene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
96-18-4	1,2,3-Trichloropropane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	0.40 J, Q-2	mg/kg	1.0	10/06/10	10/08/10 16:12	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
95-50-1	1,2-Dichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
107-06-2	1,2-Dichloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
78-87-5	1,2-Dichloropropane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
541-73-1	1,3-Dichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
142-28-9	1,3-Dichloropropane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
106-46-7	1,4-Dichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
594-20-7	2,2-Dichloropropane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
57-64-1	Acetone	8.0 U	mg/kg	8.0	10/06/10 12:10	10/00/110	EPA 8260C
71-43-2	Benzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
08-86-1	Bromobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/00/10	EPA 8260C
4-97-5	Bromochloromethane	1.0 U, J, QL-1	mg/kg	1.0	10/06/10	10.000.00	EPA 8260C
5-27-4	Bromodichloromethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10	EPA 8260C
15-25-2	Bromoform	2.0 U	mg/kg	2.0	10/06/10 12:10	10/00/10	EPA 8260C

Page 29 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Lab ID: <u>E104009-08</u>

Station ID: HERC06 Matrix: Waste

Date Collected: 9/28/10 14:55

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	40 U	mg/kg	40	10/06/10 12:10	10/08/10	EPA 8260C
75-15-0	Carbon disulfide	0.42 J, Q-2	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
56-23-5	Carbon Tetrachloride	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
108-90-7	Chlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-00-3	Chloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
67-66-3	Chloroform	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
4-87-3	Chloromethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
110-82-7	Cyclohexane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
124-48-1	Dibromochloromethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
74-95-3	Dibromomethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10	EPA 8260C
100-41-4	Ethyl Benzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
87-68-3	Hexachlorobutadiene	1.0 U	mg/kg	1,0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
98-82-8	Isopropylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
79-20-9	Methyl Acetate	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10	EPA 8260C
591-78-6	Methyl Butyl Ketone	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
78-93-3	Methyl Ethyl Ketone	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
108-87-2	Methylcyclohexane	0.24 J, Q-2	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-09-2	Methylene Chloride	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
04-51-8	n-Butylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
103-65-1	n-Propylbenzene	1.0 U	mg/kg	1.0	10/06/10	10/08/10 16:12	EPA 8260C
95-49-8	o-Chlorotoluene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
5-47-6	o-Xylene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
06-43-4	p-Chlorotoluene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
9-87-6	p-Isopropyltoluene	38	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
35-98-8	sec-Butylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
00-42-5	Styrene	40 U	mg/kg	40	10/06/10 12:10	10/08/10 16:12	EPA 8260C

Page 30 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Station ID: <u>HERC06</u> Lab ID: <u>E104009-08</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRI.	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	1.0 U	mg/kg	1.0	10/06/10	10/08/10 16:12	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
108-88-3	Toluene	280	mg/kg	10	10/06/10 12:10	10/07/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
75-01-4	Vinyl chloride	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 16:12	EPA 8260C
Γentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	20 U	mg/kg	20	10/06/10 12:10	10/08/10 16:12	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u> Station ID: <u>HERC06</u> Lab ID: <u>E104009-08</u>

Matrix: Waste

Date Collected: 9/28/10 14:55

CAS Number	Analyte	Results Qualifiers	Units	HRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
107-06-2	1,2-Dichloroethane:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
106-46-7	1,4-Dichlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10	EPA 8260C
71-43-2	Benzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
56-23-5	Carbon Tetrachloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
08-90-7	Chlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
67-66-3	Chloroform:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
87-68-3	Hexachlorobutadiene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
78-93-3	Methyl Ethyl Ketone:	NA-5		0.0010	10/13/10 15:00	10/13/10 15:00	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
75-01-4	Vinyl chloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C

Page 32 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u> Station ID: <u>HERC07</u> Lab ID: <u>E104009-09</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	2.9	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
71-55-6	1,1,1-Trichloroethane	2.4 U	mg/kg	2.4	10/06/10	10/08/10 17:04	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
9-00-5	1,1,2-Trichloroethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
75-34-3	1,1-Dichloroethane	2.4 U, J, QL-1	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
563-58-6	1,1-Dichloropropene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
96-18-4	1,2,3-Trichloropropane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	1.3 J, Q-2	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	4.9 U	mg/kg	4.9	10/06/10 12:10	10/08/10 17:04	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
95-50-1	1,2-Dichlorobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
107-06-2	1,2-Dichloroethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
78-87-5	1,2-Dichloropropane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
541-73-1	1,3-Dichlorobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
142-28-9	1,3-Dichloropropane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
106-46-7	1,4-Dichlorobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
594-20-7	2,2-Dichloropropane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
57-64-1	Acetone	19 U	mg/kg	19	10/06/10 12:10	10/08/10 17:04	EPA 8260C
71-43-2	Benzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
08-86-1	Bromobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
4-97-5	Bromochloromethane	2.4 U, J, QL-1	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
5-27-4	Bromodichloromethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
15-25-2	Bromoform	4.9 U	mg/kg	4.9	10/06/10 12:10	10/08/10 17:04	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Lab ID: <u>E104009-09</u>

Matrix: Waste

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u>
Station ID: <u>HERC07</u>

Date Collected: 9/28/10 15:25

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	97 U	mg/kg	97	10/06/10 12:10	10/08/10 17:04	EPA 8260C
75-15-0	Carbon disulfide	0.78 J, Q-2	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
56-23-5	Carbon Tetrachloride	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
108-90-7	Chlorobenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
75-00-3	Chloroethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
67-66-3	Chloroform	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
4-87-3	Chloromethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
110-82-7	Cyclohexane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
124-48-1	Dibromochloromethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
74-95-3	Dibromomethane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
100-41-4	Ethyl Benzene	0.92 J, Q-2	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
87-68-3	Hexachlorobutadiene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
98-82-8	Isopropylbenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
79-20-9	Methyl Acetate	4.9 U	mg/kg	4.9	10/06/10 12:10	10/08/10 17:04	EPA 8260C
591-78-6	Methyl Butyl Ketone	4.9 U	mg/kg	4.9	10/06/10 12:10	10/08/10 17:04	EPA 8260C
78-93-3	Methyl Ethyl Ketone	4.9 U	mg/kg	4.9	10/06/10 12:10	10/08/10 17:04	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	4.9 U	mg/kg	4.9	10/06/10 12:10	10/08/10 17:04	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
108-87-2	Methylcyclohexane	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
75-09-2	Methylene Chloride	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
104-51-8	n-Butylbenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
103-65-1	n-Propylbenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
95-49-8	o-Chlorotoluene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
05-47-6	o-Xylene	0.73 J, Q-2	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
06-43-4	p-Chlorotoluene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
9-87-6	p-Isopropyltoluene	170	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
35-98-8	sec-Butylbenzene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
100-42-5	Styrene	97 U	mg/kg	97	10/06/10 12:10	10/08/10	EPA 8260C

Page 34 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u> Station ID: <u>HERC07</u> Lab ID: <u>E104009-09</u>

Matrix: Waste

Date Collected: 9/28/10 15:25

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	2.4 U	mg/kg	2.4	10/06/10	10/08/10 17:04	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
108-88-3	Toluene	1400	mg/kg	9.7	10/06/10	10/07/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
5-69-4	Trichlorofluoromethane (Freon 11)	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10	EPA 8260C
75-01-4	Vinyl chloride	2.4 U	mg/kg	2.4	10/06/10 12:10	10/08/10 17:04	EPA 8260C
Fentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	50 U	mg/kg	50	10/06/10 12:10	10/08/10 17:04	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u> Station ID: <u>HERC07</u> Lab ID: <u>E104009-09</u>

Matrix: Waste

Date Collected: 9/28/10 15:25

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzad	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
107-06-2	1,2-Dichloroethane:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
106-46-7	1,4-Dichlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10	EPA 8260C
71-43-2	Benzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
56-23-5	Carbon Tetrachloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
108-90-7	Chlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
67-66-3	Chloroform:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
87-68-3	Hexachlorobutadiene:	' NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
78-93-3	Methyl Ethyl Ketone:	NA-5		0.0010	10/13/10	10/13/10 15:00	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
75-01-4	Vinyl chloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Lab ID: <u>E104009-10</u>

Matrix: Waste

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u>
Station ID: <u>HERC08</u>

Date Collected: 9/29/10 8:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
71-55-6	1,1,1-Trichloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
9-00-5	1,1,2-Trichloroethane	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
75-34-3	1,1-Dichloroethane	1.0 U, J, QL-1	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
563-58-6	1,1-Dichloropropene	1.0 U	mg/kg	1.0	10/06/10 12:10	19/08/10 15:20	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
96-18-4	1,2,3-Trichloropropane	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
20-82-1	1,2,4-Trichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
95-50-1	1,2-Dichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
107-06-2	1,2-Dichloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10	EPA 8260C
78-87-5	1,2-Dichloropropane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
541-73-1	1,3-Dichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
142-28-9	1,3-Dichloropropane	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
106-46-7	1,4-Dichlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
594-20-7	2,2-Dichloropropane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10	EPA 8260C
57-64-1	Acetone	8.0 U	mg/kg	8.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
71-43-2	Benzene	1.0 U	mg/kg	1.0	10/06/10	10/08/10	EPA 8260C
108-86-1	Bromobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
4-97-5	Bromochloromethane	1.0 U, J, QL-1	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
5-27-4	Bromodichloromethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
75-25-2	Bromoform	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC08

Station ID: HERC08

Matrix: Waste

Date Collected: 9/29/10 8:50

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	40 U	mg/kg	40	10/06/10 12:10	10/08/10 15:20	EPA 8260C
75-15-0	Carbon disulfide	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
56-23-5	Carbon Tetrachloride	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
108-90-7	Chlorobenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
75-00-3	Chloroethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
67-66-3	Chloroform	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
14-87-3	Chloromethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
110-82-7	Cyclohexane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
124-48-1	Dibromochloromethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
74-95-3	Dibromomethane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
100-41-4	Ethyl Benzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
87-68-3	Hexachlorobutadiene	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
98-82-8	Isopropylbenzene	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
79-20-9	Methyl Acetate	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10	EPA 8260C
591-78-6	Methyl Butyl Ketone	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
78-93-3	Methyl Ethyl Ketone	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	2.0 U	mg/kg	2.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
108-87-2	Methylcyclohexane	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
75-09-2	Methylene Chloride	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
104-51-8	n-Butylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
103-65-1	n-Propylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
95-49-8	o-Chlorotoluene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10	EPA 8260C
5-47-6	o-Xylene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
06-43-4	p-Chlorotoluene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
9-87-6	p-Isopropyltoluene	2.6	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
35-98-8	sec-Butylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
100-42-5	Styrene	40 U	mg/kg	40	10/06/10 12:10	10/08/10 15:20	EPA 8260C

Page 38 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u>

Lab ID: <u>E104009-10</u>

Station ID: HERC08

Matrix: Waste

Date Collected: 9/29/10 8:50

CAS Number	Aualyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Melkad
98-06-6	tert-Butylbenzene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
27-18-4	Tetrachloroethene (Tetrachloroethylene)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
108-88-3	Toluene	34	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
56-60-5	trans-1,2-Dichloroethene	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	1.0 U	mg/kg	1.0	10/06/10	10/08/10 15:20	EPA 8260C
9-01-6	Trichloroethene (Trichloroethylene)	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
5-69-4	Trichlorofluoromethane (Freon 11)	1.0 U	mg/kg	1.0	10/06/10	10/08/10	EPA 8260C
75-01-4	Vinyl chloride	1.0 U	mg/kg	1.0	10/06/10 12:10	10/08/10 15:20	EPA 8260C
entatively	Identified Compounds:						
84-0000	Tentatively Identified Compounds	20 U	mg/kg	20	10/06/10 12:10	10/08/10	EPA 8260C

Page 39 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u> Station ID: <u>HERC08</u> Lab ID: <u>E104009-10</u>

Matrix: Waste

Date Collected: 9/29/10 8:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
107-06-2	1,2-Dichloroethane:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
106-46-7	1,4-Dichlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
71-43-2	Benzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
56-23-5	Carbon Tetrachloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
08-90-7	Chlorobenzene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
67-66-3	Chloroform:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
87-68-3	Hexachlorobutadiene:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
78-93-3	Methyl Ethyl Ketone:	NA-5		0.0010	10/13/10 15:00	10/13/10 15:00	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene):	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C
75-01-4	Vinyl chloride:	NA-5		0.00050	10/13/10 15:00	10/13/10 15:00	EPA 8260C

Page 40 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC09-B

Station ID: HERC09

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	3.2	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
71-55-6	1,1,1-Trichloroethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
9-00-5	1,1,2-Trichloroethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-34-3	1,1-Dichloroethane	2.5 U, J, QL-1	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
563-58-6	1,1-Dichloropropene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
96-18-4	1,2,3-Trichloropropane	2.5 U	mg/kg	2.5	10/06/10	10/08/10 17:30	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	3.0	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	5.0 U	mg/kg	5.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
95-50-1	1,2-Dichlorobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
107-06-2	1,2-Dichloroethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
78-87-5	1,2-Dichloropropane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
541-73-1	1,3-Dichlorobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
142-28-9	1,3-Dichloropropane	2.5 U	mg/kg	2.5	10/06/10	10/08/10 17:30	EPA 8260C
106-46-7	1,4-Dichlorobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
594-20-7	2,2-Dichloropropane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
67-64-1	Acetone	20 U	mg/kg	20	10/06/10 12:10	10/08/10 17:30	EPA 8260C
71-43-2	Benzene	170	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
108-86-1	Bromobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
4-97-5	Bromochloromethane	2.5 U, J, QL-1	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
5-27-4	Bromodichloromethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-25-2	Bromoform	5.0 U	mg/kg	5.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C

Page 41 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	100 U	mg/kg	100	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-15-0	Carbon disulfide	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
56-23-5	Carbon Tetrachloride	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
108-90-7	Chlorobenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-00-3	Chloroethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
67-66-3	Chloroform	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
/4-87-3	Chloromethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
56-59-2	cis-1,2-Dichloroethene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
0061-01-5	cis-1,3-Dichloropropene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
110-82-7	Cyclohexane	29	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
124-48-1	Dibromochloromethane	2.5 U	mg/kg	2.5	10/06/10	10/08/10 17:30	EPA 8260C
74-95-3	Dibromomethane	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
00-41-4	Ethyl Benzene	1.0 J, Q-2	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
37-68-3	Hexachlorobutadiene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
8-82-8	Isopropylbenzene	6.0 U, D-4	mg/kg	6.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C
9-20-9	Methyl Acetate	5.0 U	mg/kg	5.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C
91-78-6	Methyl Butyl Ketone	5.0 U	mg/kg	5.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C
78-93-3	Methyl Ethyl Ketone	5.0 U	mg/kg	5.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C
08-10-1	Methyl Isobutyl Ketone	5.0 U	mg/kg	5.0	10/06/10 12:10	10/08/10 17:30	EPA 8260C
634-04-4	Methyl T-Butyl Ether (MTBE)	2.5 U	mg/kg	2.5	10/06/10	10/08/10 17:30	EPA 8260C
08-87-2	Methylcyclohexane	8.2	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-09-2	Methylene Chloride	2.5 U	mg/kg	2.5	10/06/10	10/08/10 17:30	EPA 8260C
04-51-8	n-Butylbenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
03-65-1	n-Propylbenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
5-49-8	o-Chlorotoluene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
5-47-6	o-Xylene	1.0 J, Q-2	mg/kg	2.5	10/06/10	10/08/10 17:30	EPA 8260C
06-43-4	p-Chlorotoluene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
9-87-6	p-Isopropyltoluene	610	mg/kg	25	10/06/10	10/07/10 17:17	EPA 8260C
35-98-8	sec-Butylbenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
00-42-5	Styrene	100 U	mg/kg	100	10/06/10	10/08/10 17:30	EPA 8260C

Page 42 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
108-88-3	Toluene	1100	mg/kg	25	10/06/10 12:10	10/07/10 17:17	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
75-01-4	Vinyl chloride	2.5 U	mg/kg	2.5	10/06/10 12:10	10/08/10 17:30	EPA 8260C
Tentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	50 U	mg/kg	50	10/06/10	10/08/10 17:30	EPA 8260C

Page 43 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	- Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
107-06-2	1,2-Dichloroethane	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
71-43-2	Benzene	1.8	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
56-23-5	Carbon Tetrachloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
08-90-7	Chlorobenzene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
67-66-3	Chloroform	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
87-68-3	Hexachlorobutadiene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.50 U	mg/L	0.50	10/13/10 15:00	10/13/10	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C
75-01-4	Vinyl chloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:11	EPA 8260C

Page 44 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629
Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Lab ID: <u>E104009-12</u>

Station ID: HERC10 Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
71-55-6	1,1,1-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
9-00-5	1,1,2-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
75-34-3	1,1-Dichloroethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
563-58-6	1,1-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
37-61-6	1,2,3-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
6-18-4	1,2,3-Trichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
20-82-1	1,2,4-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-63-6	1,2,4-Trimethylbenzene	7.0 J, Q-2, QR-1	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
6-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	50 U	mg/kg	50	10/06/10 12:10	10/07/10 17:43	EPA 8260C
06-93-4	1,2-Dibromoethane (EDB)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-50-1	1,2-Dichlorobenzene	34	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
07-06-2	1,2-Dichloroethane	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
8-87-5	1,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
08-67-8	1,3,5-Trimethylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
41-73-1	1,3-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
42-28-9	1,3-Dichloropropane	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
06-46-7	1,4-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
94-20-7	2,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
7-64-1	Acetone	200 U	mg/kg	200	10/06/10 12:10	10/07/10 17:43	EPA 8260C
1-43-2	Benzene	140	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
08-86-1	Bromobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
4-97-5	Bromochloromethane	25 U, J, QL-1	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
5-27-4	Bromodichloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-25-2	Bromoform	50 U	mg/kg	50	10/06/10 12:10	10/07/10	EPA 8260C

Page 45 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Lab ID: <u>E104009-12</u>

Station ID: HERC10 Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	100 U	mg/kg	100	10/06/10 12:10	10/07/10 17:43	EPA 8260C
75-15-0	Carbon disulfide	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
6-23-5	Carbon Tetrachloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
08-90-7	Chlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-00-3	Chloroethane	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
7-66-3	Chloroform	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
4-87-3	Chloromethane	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
56-59-2	cis-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
0061-01-5	cis-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
10-82-7	Cyclohexane	1500	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
24-48-1	Dibromochloromethane	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
4-95-3	Dibromomethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-71-8	Dichlorodifluoromethane (Freon 12)	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
00-41-4	Ethyl Benzene	4.0 J, Q-2	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
7-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
8-82-8	Isopropylbenzene	70 U, D-4	mg/kg	70	10/06/10 12:10	10/07/10 17:43	EPA 8260C
9-20-9	Methyl Acetate	50 U	mg/kg	50	10/06/10 12:10	10/07/10 17:43	EPA 8260C
91-78-6	Methyl Butyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 17:43	EPA 8260C
8-93-3	Methyl Ethyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 17:43	EPA 8260C
08-10-1	Methyl Isobutyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 17:43	EPA 8260C
634-04-4	Methyl T-Butyl Ether (MTBE)	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
08-87-2	Methylcyclohexane	12 J, Q-2	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-09-2	Methylene Chloride	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
04-51-8	n-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
03-65-1	n-Propylbenzene	25 U	mg/kg	25	10/06/10	10/07/10 17:43	EPA 8260C
5-49-8	o-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
5-47-6	o-Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
06-43-4	p-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
9-87-6	p-Isopropyltoluene	3400	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
35-98-8	sec-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
00-42-5	Styrene	100 U	mg/kg	100	10/06/10 12:10	10/07/10 17:43	EPA 8260C

Page 46 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Lab ID: <u>E104009-12</u>

Station ID: HERC10 Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
108-88-3	Toluene	3100	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
75-01-4	Vinyl chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 17:43	EPA 8260C
 Γentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	500 U	mg/kg	500	10/06/10 12:10	10/07/10 17:43	EPA 8260C

Page 47 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Station ID: <u>HERC10</u> Lab ID: <u>E104009-12</u>

Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
107-06-2	1,2-Dichloroethane	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.25 U	mg/L	0.25	10/13/10	10/13/10 17:37	EPA 8260C
71-43-2	Benzene	2.2	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
56-23-5	Carbon Tetrachloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
08-90-7	Chlorobenzene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
67-66-3	Chloroform	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
87-68-3	Hexachlorobutadiene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.50 U	mg/L	0.50	10/13/10 15:00	10/13/10 17:37	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.25 U	mg/L	0.25	10/13/10	10/13/10 17:37	EPA 8260C
75-01-4	Vinyl chloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 17:37	EPA 8260C

Page 48 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>

Station ID: <u>HERC11</u>

Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	25 U	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
71-55-6	1,1,1-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
79-00-5	1,1,2-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-34-3	1,1-Dichloroethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
563-58-6	1,1-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
96-18-4	1,2,3-Trichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	25 U, J, QR-1	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	49 U	mg/kg	49	10/06/10 12:10	10/07/10 18:09	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
95-50-1	1,2-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
107-06-2	1,2-Dichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
78-87-5	1,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
541-73-1	1,3-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
142-28-9	1,3-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
106-46-7	1,4-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
594-20-7	2,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
67-64-1	Acetone	200 U	mg/kg	200	10/06/10 12:10	10/07/10 18:09	EPA 8260C
71-43-2	Benzene	77	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
108-86-1	Bromobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
74-97-5	Bromochloromethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
15-27-4	Bromodichloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-25-2	Bromoform	49 U	mg/kg	49	10/06/10	10/07/10 18:09	EPA 8260C

Page 49 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u> Lab ID: <u>E104009-13</u>

Station ID: HERC11 Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	98 U	mg/kg	98	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-15-0	Carbon disulfide	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
56-23-5	Carbon Tetrachloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
108-90-7	Chlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-00-3	Chloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
67-66-3	Chloroform	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
4-87-3	Chloromethane	25 U	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
110-82-7	Cyclohexane	100	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
124-48-1	Dibromochloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
74-95-3	Dibromomethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
100-41-4	Ethyl Benzene	25 U	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
98-82-8	Isopropylbenzene	26 U, D-4	mg/kg	26	10/06/10 12:10	10/07/10 18:09	EPA 8260C
79-20-9	Methyl Acetate	49 U	mg/kg	49	10/06/10	10/07/10 18:09	EPA 8260C
591-78-6	Methyl Butyl Ketone	49 U	mg/kg	49	10/06/10 12:10	10/07/10 18:09	EPA 8260C
78-93-3	Methyl Ethyl Ketone	49 U	mg/kg	49	10/06/10 12:10	10/07/10 18:09	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	49 U	mg/kg	49	10/06/10 12:10	10/07/10 18:09	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
108-87-2	Methylcyclohexane	7.4 J, Q-2	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
75-09-2	Methylene Chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
104-51-8	n-Butylbenzene	25 U	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
03-65-1	n-Propylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
5-49-8	o-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
5-47-6	o-Xylene	25 U	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
06-43-4	p-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
9-87-6	p-Isopropyltoluene	720	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
35-98-8	sec-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
00-42-5	Styrene	98 U	mg/kg	98	10/06/10	10/07/10 18:09	EPA 8260C

Page 50 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>
Station ID: <u>HERC11</u>

Lab ID: <u>E104009-13</u>

Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
98-06-6	tert-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
108-88-3	Toluene	2600	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	25 U	mg/kg	25	10/06/10	10/07/10 18:09	EPA 8260C
75-01-4	Vinyl chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:09	EPA 8260C
Tentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	500 U	mg/kg	500	10/06/10 12:10	10/07/10 18:09	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u> Station ID: <u>HERC11</u> Lab ID: <u>E104009-13</u>

Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyse	Resalts Qualifiers	Units	MRL	Prepared	Analysed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
107-06-2	1,2-Dichloroethane	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
71-43-2	Benzene	0.54 J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
56-23-5	Carbon Tetrachloride	0.025 U, J, H-8, QL-3	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
08-90-7	Chlorobenzene	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
67-66-3	Chloroform	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
87-68-3	Hexachlorobutadiene	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.050 U, J, H-8	mg/L	0.050	10/21/10 15:00	10/21/10 18:54	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C
75-01-4	Vinyl chloride	0.025 U, J, H-8	mg/L	0.025	10/21/10 15:00	10/21/10 18:54	EPA 8260C

Page 52 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
71-55-6	1,1,1-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
9-00-5	1,1,2-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-34-3	1,1-Dichloroethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
563-58-6	1,1-Dichloropropene	25 U	mg/kg	25	10/06/10	10/07/10 18:35	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
96-18-4	1,2,3-Trichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	5.0 J, Q-2, QR-1	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	50 U	mg/kg	50	10/06/10 12:10	10/07/10 18:35	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
95-50-1	1,2-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
107-06-2	1,2-Dichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
78-87-5	1,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
541-73-1	1,3-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
142-28-9	1,3-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
106-46-7	1,4-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12;10	10/07/10 18:35	EPA 8260C
594-20-7	2,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
67-64-1	Acetone	200 U	mg/kg	200	10/06/10 12:10	10/07/10 18:35	EPA 8260C
71-43-2	Benzene	440	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
108-86-1	Bromobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
74-97-5	Bromochloromethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
5-27-4	Bromodichloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-25-2	Bromoform	50 U	mg/kg	50	10/06/10	10/07/10	EPA 8260C

Page 53 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	100 U	mg/kg	100	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-15-0	Carbon disulfide	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
56-23-5	Carbon Tetrachloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
108-90-7	Chlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-00-3	Chloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
67-66-3	Chloroform	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
/4-87-3	Chloromethane	25 U	mg/kg	25	10/06/10	10/07/10 18:35	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
110-82-7	Cyclohexane	48	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
124-48-1	Dibromochloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
74-95-3	Dibromomethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	25 U	mg/kg	25	10/06/10	10/07/10 18:35	EPA 8260C
100-41-4	Ethyl Benzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
98-82-8	Isopropylbenzene	47	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
79-20-9	Methyl Acetate	50 U	mg/kg	50	10/06/10 12:10	10/07/10 18:35	EPA 8260C
591-78-6	Methyl Butyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 18:35	EPA 8260C
78-93-3	Methyl Ethyl Ketone	50 U	mg/kg	50	10/06/10	10/07/10 18:35	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 18:35	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
08-87-2	Methylcyclohexane	11 J, Q-2	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-09-2	Methylene Chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
04-51-8	n-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
103-65-1	n-Propylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
95-49-8	o-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
5-47-6	o-Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
06-43-4	p-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
9-87-6	p-Isopropyltoluene	2400	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
35-98-8	sec-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
100-42-5	Styrene	100 U	mg/kg	100	10/06/10 12:10	10/07/10 18:35	EPA 8260C

Page 54 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzéd	Method
98-06-6	tert-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
108-88-3	Toluene	160	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10	10/07/10 18:35	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18:35	EPA 8260C
75-69-4	Trichlorofluoromethane (Freon 11)	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
75-01-4	Vinyl chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 18;35	EPA 8260C
Γentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	500 U	mg/kg	500	10/06/10 12:10	10/07/10 18:35	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS					V.		
Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
107-06-2	1,2-Dichloroethane	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
71-43-2	Benzene	1.8	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
56-23-5	Carbon Tetrachloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
108-90-7	Chlorobenzene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
67-66-3	Chloroform	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
87-68-3	Hexachlorobutadiene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.50 U	mg/L	0.50	10/13/10 15:00	10/13/10 18:29	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18;29	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C
75-01-4	Vinyl chloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:29	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

Date Collected: 9/29/10 15:10

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
R4-7156	(m- and/or p-)Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
630-20-6	1,1,1,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
71-55-6	1,1,1-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
79-34-5	1,1,2,2-Tetrachloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
79-00-5	1,1,2-Trichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
75-34-3	1,1-Dichloroethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
563-58-6	1,1-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
87-61-6	1,2,3-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
96-18-4	1,2,3-Trichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
120-82-1	1,2,4-Trichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
95-63-6	1,2,4-Trimethylbenzene	5.5 J, Q-2, QR-1	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
96-12-8	1,2-Dibromo-3-Chloropropane (DBCP)	50 U	mg/kg	50	10/06/10 12:10	10/07/10 19:01	EPA 8260C
106-93-4	1,2-Dibromoethane (EDB)	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
95-50-1	1,2-Dichlorobenzene	31	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
107-06-2	1,2-Dichloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
78-87-5	1,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
108-67-8	1,3,5-Trimethylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
541-73-1	1,3-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
142-28-9	1,3-Dichloropropane	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
106-46-7	1,4-Dichlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
594-20-7	2,2-Dichloropropane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
57-64-1	Acetone	200 U	mg/kg	200	10/06/10 12:10	10/07/10 19:01	EPA 8260C
71-43-2	Benzene	390	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
08-86-1	Bromobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
4-97-5	Bromochloromethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
5-27-4	Bromodichloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
5-25-2	Bromoform	50 U	mg/kg	50	10/06/10 12:10	10/07/10 19:01	EPA 8260C

Page 57 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: HERC13-B

Station ID: HERC13

Lab ID: E104009-15

Matrix: Waste

Date Collected: 9/29/10 15:10

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
74-83-9	Bromomethane	100 U	mg/kg	100	10/06/10 12:10	10/07/10 19:01	EPA 8260C
75-15-0	Carbon disulfide	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
56-23-5	Carbon Tetrachloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
108-90-7	Chlorobenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
75-00-3	Chloroethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
67-66-3	Chloroform	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
74-87-3	Chloromethane	25 U	mg/kg	25	10/06/10	10/07/10 19:01	EPA 8260C
156-59-2	cis-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
10061-01-5	cis-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
110-82-7	Cyclohexane	870	mg/kg	25	10/06/10	10/07/10	EPA 8260C
124-48-1	Dibromochloromethane	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
74-95-3	Dibromomethane	25 U, J, QL-1	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
75-71-8	Dichlorodifluoromethane (Freon 12)	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
100-41-4	Ethyl Benzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
87-68-3	Hexachlorobutadiene	25 U	mg/kg	25	10/06/10	10/07/10 19:01	EPA 8260C
98-82-8	Isopropylbenzene	330 U, D-4	mg/kg	330	10/06/10 12:10	10/07/10 19:01	EPA 8260C
79-20-9	Methyl Acetate	50 U	mg/kg	50	10/06/10 12:10	10/07/10 19:01	EPA 8260C
591-78-6	Methyl Butyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10 19:01	EPA 8260C
78-93-3	Methyl Ethyl Ketone	50 U	mg/kg	50	10/06/10 12:10	10/07/10	EPA 8260C
108-10-1	Methyl Isobutyl Ketone	11 J, Q-2	mg/kg	50	10/06/10 12:10	10/07/10 19:01	EPA 8260C
1634-04-4	Methyl T-Butyl Ether (MTBE)	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
108-87-2	Methylcyclohexane	10 J, Q-2	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
75-09-2	Methylene Chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
104-51-8	n-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
103-65-1	n-Propylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
95-49-8	o-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
05-47-6	o-Xylene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
06-43-4	p-Chlorotoluene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
9-87-6	p-Isopropyltoluene	3100	mg/kg	25	10/06/10	10/07/10	EPA 8260C
35-98-8	sec-Butylbenzene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
00-42-5	Styrene	100 U	mg/kg	100	10/06/10 12:10	10/07/10	EPA 8260C

Page 58 of 60 E104009 TCLPV VOA FINAL 11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

Volatile Organics

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

Date Collected: 9/29/10 15:10

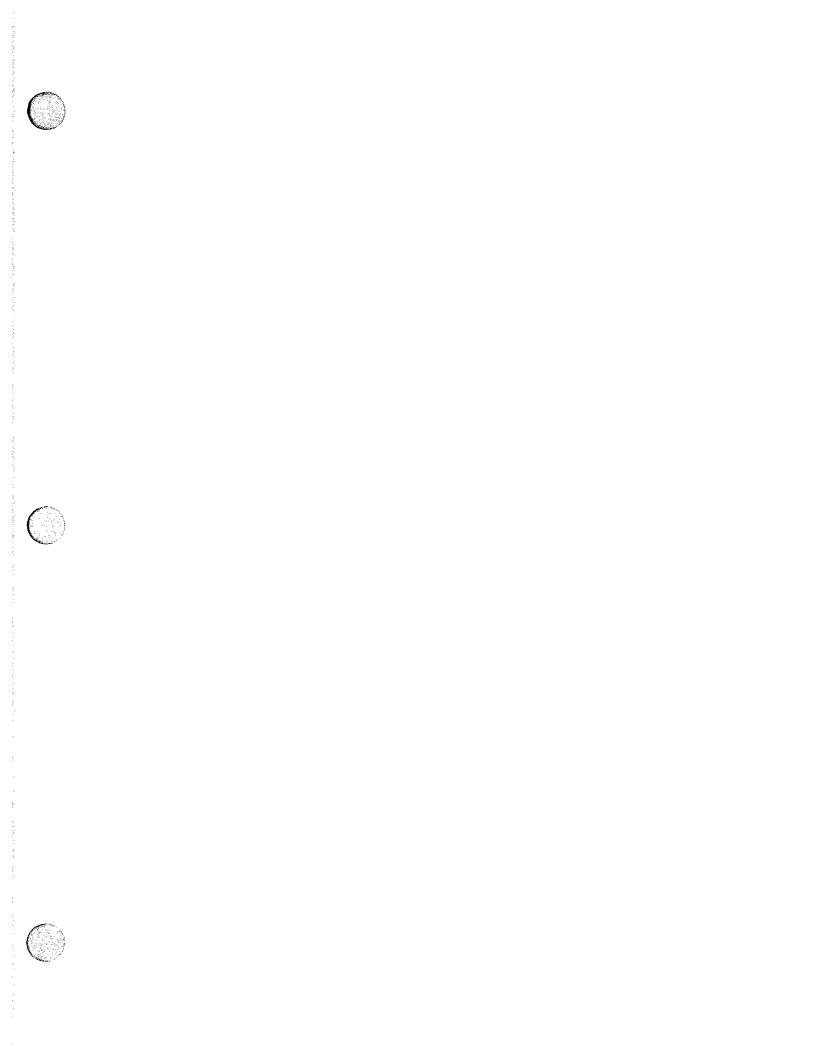
CAS Number	Analyte	Results Qualiflers	Units	MRL	Perpared	Analyzed	Method
98-06-6	tert-Butylbenzene	25 U	mg/kg	25	10/06/10	10/07/10	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
108-88-3	Toluene	3400	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
156-60-5	trans-1,2-Dichloroethene	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
10061-02-6	trans-1,3-Dichloropropene	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	25 U	mg/kg	25	10/06/10 12:10	10/07/10	EPA 8260C
5-69-4	Trichlorofluoromethane (Freon 11)	25 U	mg/kg	25	10/06/10	10/07/10 19:01	EPA 8260C
75-01-4	Vinyl chloride	25 U	mg/kg	25	10/06/10 12:10	10/07/10 19:01	EPA 8260C
Γentatively	Identified Compounds:						
R4-0000	Tentatively Identified Compounds	500 U	mg/kg	500	10/06/10 12:10	10/07/10 19:01	EPA 8260C

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Kristin Trapp

TCLP Volatiles

Project: 10-0629, Hercules Inc


Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

Date Collected: 9/29/10 15:10

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
75-35-4	1,1-Dichloroethene (1,1-Dichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
107-06-2	1,2-Dichloroethane	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
106-46-7	1,4-Dichlorobenzene	0.25 U	mg/L	0.25	10/13/10	10/13/10 18:54	EPA 8260C
71-43-2	Benzene	3.6	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
56-23-5	Carbon Tetrachloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
108-90-7	Chlorobenzene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
67-66-3	Chloroform	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
87-68-3	Hexachlorobutadiene	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
78-93-3	Methyl Ethyl Ketone	0.50 U	mg/L	0.50	10/13/10 15:00	10/13/10 18:54	EPA 8260C
127-18-4	Tetrachloroethene (Tetrachloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
79-01-6	Trichloroethene (Trichloroethylene)	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C
75-01-4	Vinyl chloride	0.25 U	mg/L	0.25	10/13/10 15:00	10/13/10 18:54	EPA 8260C

11/8/10 9:52

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

January 4, 2011

4SESD-ASB

MEMORANDUM

SUBJECT:

FINAL Analytical Report

Project: 10-0629, Hercules Inc

Civil Enforcement

FROM:

Jenny Scifres

ASB Inorganic Chemistry Section Chief

THRU:

Gary Bennett, Chief

Analytical Support Branch

TO

Sharon Matthews

Attached are the final results for the analytical groups listed below. These analyses were performed in accordance with the Analytical Support Branch's (ASB) Laboratory Operations and Quality Assurance Manual (ASB LOQAM) found at www.epa.gov/region4/sesd/asbsop. Any unique project data quality objectives specified in writing by the data requestor have also been incorporated into the data unless otherwise noted in the Report Narrative. Chemistry data have been verified based on the ASB LOQAM specifications and may have been qualified if the applicable quality control criteria were not met. For a listing of specific data qualifiers and explanations, please refer to the Data Qualifier Definitions included in this report. The reported results are representative only of the samples as received by the laboratory.

Analyses Included in this report:

Method Used:

TCLP Metals (TCLPM)

TCLP Metals

EPA 6010

Total Metals (TMTL)

Total Metals

EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Report Narrative for Work Order E104009, Project: 10-0629

Tin not reported per Project Leader. There is tin in reagents used for digesting the samples.

Sample Disposal Policy

Because of the laboratory's limited space for long term sample storage, our policy is to dispose of samples on a periodic schedule. Please note that within 60 days of this memo, the original samples and all sample extracts and/or sample digestates will be disposed of in accordance with applicable regulations. The 60-day sample disposal policy does not apply to criminal samples which are held until the laboratory is notified by the criminal investigators that case development and litigation are complete.

These samples may be held in the laboratory's custody for a longer period of time if you have a special project need. If you wish for the laboratory to hold samples beyond the 60-day period, please contact our Sample Control Coordinator, Debbie Colquitt, by e-mail at Colquitt.Debbie@epa.gov, and provide a reason for holding samples beyond 60 days

Page 2 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

SAMPLES INCLUDED IN THIS REPORT

Project: 10-0629, Hercules Inc

Sample ID Laboratory ID Matrix	Date Collected	Date Received
ERB01 E104009-01 Equipment Rinse Blank	9/23/10 13:30	10/1/10 8:35
PB01 E104009-02 Preservative Blank	9/23/10 13:30	10/1/10 8:35
HERC01-A E104009-03 Waste	9/28/10 10:10	10/1/10 8:35
HERC02-B E104009-04 Waste	9/28/10 10:55	10/1/10 8:35
HERC03-B E104009-05 Waste	9/28/10 13:15	10/1/10 8:35
HERC04-B E104009-06 Waste	9/28/10 13:50	10/1/10 8:35
HERC05-A E104009-07 Waste	9/28/10 14:05	10/1/10 8:35
HERC06-B E104009-08 Waste	9/28/10 14:55	10/1/10 8:35
HERC07-B E104009-09 Waste	9/28/10 15:25	10/1/10 8:35
HERC07-B E104009-09 waste HERC08 E104009-10 Waste	9/29/10 08:50	10/1/10 8:35
HERC09-B E104009-11 Waste	9/29/10 14:20	10/1/10 8:35
HERC10-B E104009-12 Waste	9/29/10 14:15	10/1/10 8:35
HERC11-B E104009-13 Waste	9/29/10 14:30	10/1/10 8:35
HERC12-B E104009-14 Waste	9/29/10 14:50	10/1/10 8:35
HERC13-B E104009-15 Waste	9/29/10 15:10	10/1/10 8:35

Page 3 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

DATA QUALIFIER DEFINITIONS

U	The analyte was not detected at or above the reporting limit.
J	The identification of the analyte is acceptable; the reported value is an estimate.
NA-5	Not Analyzed. Cannot exceed TCLP regulatory levels based on Total Scan analyses.
QM-1	Matrix Spike Recovery less than method control limits
QM-2	Matrix Spike Recovery greater than method control limits
OM-3	Matrix Spike Precision outside method control limits
OR-2	MRL verification recovery greater than upper control limits.

ACRONYMS AND ABBREVIATIONS

Chemical Abstracts Service

Note: Analytes with no known CAS identifiers have been assigned codes beginning with "E", the EPA ID as assigned by the EPA Substance Registry System (www.epa.gov/srs), or beginning with "R4-", a unique identifier assigned by the EPA Region 4 laboratory.

- MDL Method Detection Limit The minimum concentration of a substance (an analyte) that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero.
- MRL Minimum Reporting Limit Analyte concentration that corresponds to the lowest demonstrated level of acceptable quantitation. The MRL is sample-specific and accounts for preparation weights and volumes, dilutions, and moisture content of soil/sediments.
- TIC Tentatively Identified Compound An analyte identified based on a match with the instrument software's mass spectral library. A calibration standard has not been analyzed to confirm the compound's identification or the estimated concentration reported.

Page 4 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Station ID:

Lab ID: <u>E104009-01</u>

Matrix: Equipment Rinse Blank

Date Collected: 9/23/10 13:30

CAS Number	Analyse	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	100 U	ug/L	100	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-36-0	Antimony	40 U	ug/L	40	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-38-2	Arsenic	50 U	ug/L	50	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-39-3	Barium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-41-7	Beryllium	3.0 U	ug/L	3.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-43-9	Cadmium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10	EPA 6010
7440-70-2	Calcium	250 U	ug/L	250	12/03/10 11:07	12/20/10	EPA 6010
7440-47-3	Chromium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-48-4	Cobalt	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-50-8	Copper	10 U	ug/L	10	12/03/10 11:07	12/20/10 13:47	EPA 6010
7439-89-6	Iron	100 U	ug/L	100	12/03/10 11:07	12/20/10 13:47	EPA 6010
7439-92-1	Lead	20 U	ug/L	20	12/03/10 11:07	12/20/10 13:47	EPA 6010
7439-95-4	Magnesium	250 U	ug/L	250	12/03/10 11:07	12/20/10 13:47	EPA 6010
7439-96-5	Manganese	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7439-98-7	Molybdenum	10 U	ug/L	10	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-02-0	Nickel	10 U	ug/L	10	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-09-7	Potassium	1000 U	ug/L	1000	12/03/10 11:07	12/20/10 13:47	EPA 6010
7782-49-2	Selenium	45 U	ug/L	45	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-22-4	Silver	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-23-5	Sodium	1000 U	ug/L	1000	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-24-6	Strontium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-28-0	Thallium	30 U	ug/L	30	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-32-6	Titanium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-62-2	Vanadium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-65-5	Yttrium	3.0 U	ug/L	3.0	12/03/10 11:07	12/20/10 13:47	EPA 6010
7440-66-6	Zinc	10 U	ug/L	10	12/03/10 11:07	12/20/10 13:47	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: ERB01

Lab ID: <u>E104009-01</u>

Station ID:

Matrix: Equipment Rinse Blank

Date Collected: 9/23/10 13:30

CAS Number	Analyte	Results Qualifiers (Iniss MRL	Prepared	Analyzed	Method
440-38-2	Arsenic:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-39-3	Barium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-43-9	Cadmium;	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Page 6 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: PB01

Station ID:

Lab ID: <u>E104009-02</u>

Matrix: Preservative Blank

Date Collected: 9/23/10 13:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Maihod
7429-90-5	Aluminum	100 U	ug/L	100	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-36-0	Antimony	40 U	ug/L	40	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-38-2	Arsenic	50 U	ug/L	50	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-39-3	Barium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-41-7	Beryllium	3.0 U	ug/L	3.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
440-43-9	Cadmium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-70-2	Calcium	250 U	ug/L	250	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-47-3	Chromium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-48-4	Cobalt	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-50-8	Copper	10 U	ug/L	10	12/03/10 11:07	12/20/10 14:08	EPA 6010
7439-89-6	Iron	100 U	ug/L	100	12/03/10 11:07	12/20/10 14:08	EPA 6010
7439-92-1	Lead	20 U	ug/L	20	12/03/10 11:07	12/20/10 14:08	EPA 6010
7439-95-4	Magnesium	250 U	ug/L	250	12/03/10 11:07	12/20/10 14:08	EPA 6010
7439-96-5	Manganese	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7439-98-7	Molybdenum	10 U	ug/L	10	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-02-0	Nickel	10 U	ug/L	10	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-09-7	Potassium	1000 U	ug/L	1000	12/03/10 11:07	12/20/10 14:08	EPA 6010
7782-49-2	Selenium	45 U	ug/L	45	12/03/10	12/20/10 14:08	EPA 6010
7440-22-4	Silver	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-23-5	Sodium	1000 U	ug/L	1000	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-24-6	Strontium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-28-0	Thallium	30 U	ug/L	30	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-32-6	Titanium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-62-2	Vanadium	5.0 U	ug/L	5.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-65-5	Yttrium	3.0 U	ug/L	3.0	12/03/10 11:07	12/20/10 14:08	EPA 6010
7440-66-6	Zinc	10 U	ug/L	10	12/03/10 11:07	12/20/10 14:08	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: PB01

Station ID:

Lab ID: <u>E104009-02</u>

Matrix: Preservative Blank

Date Collected: 9/23/10 13:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Mathod
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
439-92-1	Lead;	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u> Station ID: <u>HERC01</u> Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Namber	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	6600	mg/kg	9.3	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-36-0	Antimony	3.7 U	mg/kg	3.7	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-38-2	Arsenic	4.7 U	mg/kg	4.7	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-39-3	Barium	18	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-41-7	Beryllium	0.28 U	mg/kg	0.28	12/09/10 14:01	12/20/10 15:10	EPA 6010
440-43-9	Cadmium	0.47 U	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-70-2	Calcium	75 J, QM-2, QM-3	mg/kg	23	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-47-3	Chromium	24	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-48-4	Cobalt	7.9	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-50-8	Copper	69 J, QM-2, QM-3	mg/kg	0.93	12/09/10 14:01	12/20/10 15:10	EPA 6010
7439-89-6	Iron	1200 J, QM-2	mg/kg	9.3	12/09/10 14:01	12/20/10 15:10	EPA 6010
7439-92-1	Lead	23	mg/kg	1.9	12/09/10 14:01	12/20/10 15:10	EPA 6010
7439-95-4	Magnesium	65	mg/kg	23	12/09/10 14:01	12/20/10 15:10	EPA 6010
7439-96-5	Manganese	4.6	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7439-98-7	Molybdenum	8.0	mg/kg	0.93	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-02-0	Nickel	71 J, QM-2, QM-3	mg/kg	0.93	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-09-7	Potassium	93 U	mg/kg	93	12/09/10 14:01	12/20/10 15:10	EPA 6010
7782-49-2	Selenium	4.2 U	mg/kg	4.2	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-22-4	Silver	0.47 U	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-23-5	Sodium	170 J, QR-2	mg/kg	93	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-24-6	Strontium	2.1	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-28-0	Thallium	2.8 U, J, QM-1	mg/kg	2.8	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-32-6	Titanium	32	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-62-2	Vanadium	4.3	mg/kg	0.47	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-65-5	Yttrium	0.58	mg/kg	0.28	12/09/10 14:01	12/20/10 15:10	EPA 6010
7440-66-6	Zinc	270 J, QM-2, QM-3	mg/kg	1.9	12/09/10 14:01	12/20/10 15:10	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC01-A</u> Station ID: <u>HERC01</u> Lab ID: <u>E104009-03</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium;	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium;	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u> Station ID: <u>HERC02</u> Lab ID: <u>E104009-04</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	4900	mg/kg	9.8	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-36-0	Antimony	3.9 U	mg/kg	3.9	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-38-2	Arsenic	4.9 U	mg/kg	4.9	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-39-3	Barium	18	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-43-9	Cadmium	0.49 U	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-70-2	Calcium	58	mg/kg	25	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-47-3	Chromium	11	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-48-4	Cobalt	14	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-50-8	Copper	44	mg/kg	0.98	12/09/10 14:01	12/20/10 15:33	EPA 6010
7439-89-6	Iron	1600	mg/kg	9.8	12/09/10 14:01	12/20/10 15:33	EPA 6010
7439-92-1	Lead	60	mg/kg	2.0	12/09/10 14:01	12/20/10 15:33	EPA 6010
7439-95-4	Magnesium	45	mg/kg	25	12/09/10 14:01	12/20/10 15:33	EPA 6010
7439-96-5	Manganese	3.8	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7439-98-7	Molybdenum	3.1	mg/kg	0.98	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-02-0	Nickel	120	mg/kg	0.98	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-09-7	Potassium	98 U	mg/kg	98	12/09/10 14:01	12/20/10 15:33	EPA 6010
7782-49-2	Selenium	4.4 U	mg/kg	4.4	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-22-4	Silver	0.49 U	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-23-5	Sodium	150 J, QR-2	mg/kg	98	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-24-6	Strontium	1.6	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-32-6	Titanium	17	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-62-2	Vanadium	2.1	mg/kg	0.49	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-65-5	Yttrium	0.57	mg/kg	0.29	12/09/10 14:01	12/20/10 15:33	EPA 6010
7440-66-6	Zinc	120	mg/kg	2.0	12/09/10 14:01	12/20/10 15:33	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC02-B</u> Station ID: <u>HERC02</u> Lab ID: <u>E104009-04</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
439-92-1	Lead;	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u>
Station ID: <u>HERC03</u>
Lab ID: <u>E104009-05</u>
Matrix: Waste

Date Collected: 9/28/10 13:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	5700	mg/kg	9.2	12/09/10	12/20/10	EPA 6010
7440-36-0	Antimony	3.7 U	mg/kg	and the state of t	14:01	15:41	CONTRACTOR INCOME.
7440-38-0	Arsenic		PERSONAL PROPERTY OF THE PERSON NAMED IN COLUMN	3.7	14:01	12/20/10 15:41 12/20/10	EPA 6010
7440-38-2	Barium	4.6 U	mg/kg	4.6	12/09/10 14:01	12/20/10 15:41	EPA 6010
uncommonstant.		21	mg/kg	0.46	12/09/10 14:01 12/09/10	12/20/10 15:41	EPA 6010
7440-41-7	Beryllium	0.27 U	mg/kg	0.27	14:01	12/20/10 15:41	EPA 6010
7440-43-9	Cadmium	0.46 U	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-70-2	Calcium	210	mg/kg	23	12/09/10	12/20/10 15:41	EPA 6010
7440-47-3	Chromium	7.7	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-48-4	Cobalt	2.9	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-50-8	Copper	29	mg/kg	0.92	12/09/10 14:01	12/20/10 15:41	EPA 6010
7439-89-6	Iron	4300	mg/kg	9.2	12/09/10 14:01	12/20/10 15:41	EPA 6010
7439-92-1	Lead	9.1	mg/kg	1.8	12/09/10 14:01	12/20/10 15:41	EPA 6010
7439-95-4	Magnesium	230	mg/kg	23	12/09/10 14:01	12/20/10 15:41	EPA 6010
7439-96-5	Manganese	31	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
7439-98-7	Molybdenum	0.92 U	mg/kg	0.92	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-02-0	Nickel	80	mg/kg	0.92	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-09-7	Potassium	180	mg/kg	92	12/09/10 14:01	12/20/10 15:41	EPA 6010
7782-49-2	Selenium	4.1 U	mg/kg	4.1	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-22-4	Silver	0.46 U	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-23-5	Sodium	92 U	mg/kg	92	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-24-6	Strontium	2.1	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-28-0	Thallium	2.7 U	mg/kg	2.7	12/09/10 14:01	12/20/10	EPA 6010
440-32-6	Titanium	62	mg/kg	0.46	12/09/10 14:01	12/20/10 15:41	EPA 6010
440-62-2	Vanadium	8.7	mg/kg	0.46	12/09/10 14:01		EPA 6010
440-65-5	Yttrium	1.2	mg/kg	0.27	12/09/10 14:01	12/20/10 15:41	EPA 6010
7440-66-6	Zinc	68	mg/kg	1.8	12/09/10 14:01	15:41 12/20/10 15:41	EPA 6010

Page 13 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC03-B</u> Station ID: <u>HERC03</u> Lab ID: <u>E104009-05</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
7782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Lab ID: <u>E104009-06</u>

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u>

Station ID: HERC04 Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	5200	mg/kg	9.1	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-36-0	Antimony	3.6 U	mg/kg	3.6	12/09/10	12/20/10	EPA 6010
7440-38-2	Arsenic	6.4	mg/kg	4.6	12/09/10	12/20/10	EPA 6010
7440-39-3	Barium	27	mg/kg	0.46	12/09/10	12/20/10	EPA 6010
7440-41-7	Beryllium	0.27 U	mg/kg	0.27	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-43-9	Cadmium	0.46	mg/kg	0.46	12/09/10 14:01	12/20/10	EPA 6010
7440-70-2	Calcium	400	mg/kg	23	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-47-3	Chromium	29	mg/kg	0.46	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-48-4	Cobalt	14	mg/kg	0.46	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-50-8	Copper	100	mg/kg	0.91	12/09/10 14:01	12/20/10 15:49	EPA 6010
7439-89-6	Iron	3400	mg/kg	9.1	12/09/10 14:01	12/20/10 15:49	EPA 6010
7439-92-1	Lead	26	mg/kg	1.8	12/09/10 14:01	12/20/10 15:49	EPA 6010
7439-95-4	Magnesium	76	mg/kg	23	12/09/10 14:01	12/20/10 15:49	EPA 6010
7439-96-5	Manganese	14	mg/kg	0.46	12/09/10 14:01	12/20/10 15:49	EPA 6010
7439-98-7	Molybdenum	4.0	mg/kg	0.91	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-02-0	Nickel	200	mg/kg	0.91	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-09-7	Potassium	96	mg/kg	91	12/09/10 14:01	12/20/10 15:49	EPA 6010
7782-49-2	Selenium	4.1 U	mg/kg	4.1	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-22-4	Silver	0.46 U	mg/kg	0.46	12/09/10	12/20/10 15:49	EPA 6010
7440-23-5	Sodium	130 J, QR-2	mg/kg	91	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-24-6	Strontium	6.1	mg/kg	0.46	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-28-0	Thallium	2.7 U	mg/kg	2.7	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-32-6	Titanium	42	mg/kg	0.46	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-62-2	Vanadium	5.6	mg/kg	0.46	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-65-5	Yttrium	0.99	mg/kg	0.27	12/09/10 14:01	12/20/10 15:49	EPA 6010
7440-66-6	Zinc	510	mg/kg	1.8	12/09/10 14:01	12/20/10 15:49	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC04-B</u> Station ID: <u>HERC04</u> Lab ID: <u>E104009-06</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
7782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u> Lab ID: <u>E104009-07</u>

Station ID: HERC05 Matrix: Waste

Date Collected: 9/28/10 14:05

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	5100	mg/kg	9.7	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-36-0	Antimony	3.9 U	mg/kg	3.9	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-38-2	Arsenic	5.6	mg/kg	4.9	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-39-3	Barium	35	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-43-9	Cadmium	0.49	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-70-2	Calcium	2000	mg/kg	24	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-47-3	Chromium	45	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-48-4	Cobalt	17	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-50-8	Copper	84	mg/kg	0.97	12/09/10 14:01	12/20/10 15:56	EPA 6010
7439-89-6	Iron	4600	mg/kg	9.7	12/09/10	12/20/10 15:56	EPA 6010
7439-92-1	Lead	34	mg/kg	1.9	12/09/10 14:01	12/20/10 15:56	EPA 6010
7439-95-4	Magnesium	170	mg/kg	24	12/09/10 14:01	12/20/10 15:56	EPA 6010
7439-96-5	Manganese	32	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7439-98-7	Molybdenum	4.8	mg/kg	0.97	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-02-0	Nickel	210	mg/kg	0.97	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-09-7	Potassium	110	mg/kg	97	12/09/10	12/20/10 15:56	EPA 6010
7782-49-2	Selenium	4.4 U	mg/kg	4.4	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-22-4	Silver	0.49 U	mg/kg	0.49	12/09/10	12/20/10 15:56	EPA 6010
7440-23-5	Sodium	460 J, QR-2	mg/kg	97	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-24-6	Strontium	8.9	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-32-6	Titanium	51	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
440-62-2	Vanadium	6.6	mg/kg	0.49	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-65-5	Yttrium	1.1	mg/kg	0.29	12/09/10 14:01	12/20/10 15:56	EPA 6010
7440-66-6	Zinc	690	mg/kg	1.9	12/09/10 14:01	12/20/10 15:56	EPA 6010

Page 17 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC05-A</u>

Station ID: <u>HERC05</u>

Lab ID: <u>E104009-07</u>

Matrix: Waste

CAS Number	Analyse	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
1440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium;	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
439-92-1	Lead:	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u>

Station ID: HERC06

Lab ID: <u>E104009-08</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	5800	mg/kg	9.9	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-36-0	Antimony	3.9 U, J, QM-1	mg/kg	3.9	12/09/10	12/20/10 16:04	EPA 6010
7440-38-2	Arsenic	4.9 U	mg/kg	4.9	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-39-3	Barium	100 J, QM-2	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-41-7	Beryllium	0.30 U	mg/kg	0.30	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-43-9	Cadmium	0.49 U	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-70-2	Calcium	5000	mg/kg	25	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-47-3	Chromium	20 J, QM-1	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-48-4	Cobalt	7.2	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
7440-50-8	Copper	27 J, QM-1, QM-3	mg/kg	0.99	12/09/10 14:01	12/20/10 16:04	EPA 6010
439-89-6	Iron	4000 J, QM-2, QM-3	mg/kg	9.9	12/09/10 14:01	12/20/10 16:04	EPA 6010
439-92-1	Lead	22	mg/kg	2.0	12/09/10 14:01	12/20/10 16:04	EPA 6010
439-95-4	Magnesium	440 J, QM-2	mg/kg	25	12/09/10 14:01	12/20/10 16:04	EPA 6010
439-96-5	Manganese	200 J, QM-2, QM-3	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
1439-98-7	Molybdenum	21 J, QM-1	mg/kg	0.99	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-02-0	Nickel	54 J, QM-2	mg/kg	0.99	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-09-7	Potassium	160	mg/kg	99	12/09/10 14:01	12/20/10 16:04	EPA 6010
782-49-2	Selenium	4.4 U	mg/kg	4.4	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-22-4	Silver	0.49 U	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-23-5	Sodium	180 J, QR-2	mg/kg	99	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-24-6	Strontium	34 J, QM-2	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-28-0	Thallium	3.0 U, J, QM-1	mg/kg	3.0	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-32-6	Titanium	56 J, QM-2	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-62-2	Vanadium	3.9	mg/kg	0.49	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-65-5	Yttrium	1.9	mg/kg	0.30	12/09/10 14:01	12/20/10 16:04	EPA 6010
440-66-6	Zinc	500 J, QM-1, QM-3	mg/kg	2.0	12/09/10 14:01	12/20/10 16:04	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC06-B</u>

Station ID: HEDGO

Station ID: <u>HERC06</u>

Lab ID: <u>E104009-08</u>

Matrix: Waste

CAS Number	Analyte	Results Qualiflers Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenie:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u> Station ID: <u>HERC07</u> Lab ID: <u>E104009-09</u>

Matrix: Waste

Date Collected: 9/28/10 15:25

CAS Number	Analyse	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	6700	mg/kg	9.5	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-36-0	Antimony	3.8 U	mg/kg	3.8	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-38-2	Arsenic	4.8 U	mg/kg	4.8	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-39-3	Barium	23	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 17:04	EPA 6010
440-43-9	Cadmium	0.48	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-70-2	Calcium	710	mg/kg	24	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-47-3	Chromium	32	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-48-4	Cobalt	9.5	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-50-8	Copper	26	mg/kg	0.95	12/09/10 14:01	12/20/10 17:04	EPA 6010
7439-89-6	Iron	5200	mg/kg	9.5	12/09/10 14:01	12/20/10 17:04	EPA 6010
7439-92-1	Lead	23	mg/kg	1.9	12/09/10 14:01	12/20/10 17:04	EPA 6010
7439-95-4	Magnesium	62	mg/kg	24	12/09/10 14:01	12/20/10 17:04	EPA 6010
7439-96-5	Manganese	37	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
1439-98-7	Molybdenum	40	mg/kg	0.95	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-02-0	Nickel	44	mg/kg	0.95	12/09/10 14:01	12/20/10 17:04	EPA 6010
440-09-7	Potassium	95 U	mg/kg	95	12/09/10 14:01	12/20/10 17:04	EPA 6010
7782-49-2	Selenium	4.3 U	mg/kg	4.3	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-22-4	Silver	0.48 U	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-23-5	Sodium	130 J, QR-2	mg/kg	95	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-24-6	Strontium	8.9	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-32-6	Titanium	22	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
440-62-2	Vanadium	2.8	mg/kg	0.48	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-65-5	Yttrium	1.7	mg/kg	0.29	12/09/10 14:01	12/20/10 17:04	EPA 6010
7440-66-6	Zinc	650	mg/kg	1.9	12/09/10 14:01	12/20/10 17:04	EPA 6010

Page 21 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC07-B</u>

Station ID: <u>HERC07</u>

Lab ID: <u>E104009-09</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers Uni	ts MRL	Propared	Analyzed	Method
7440-38-2	Arsenic:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
7782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u> Station ID: <u>HERC08</u> Lab ID: <u>E104009-10</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	7900	mg/kg	9.6	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-36-0	Antimony	3.9 U	mg/kg	3.9	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-38-2	Arsenic	4.8 U	mg/kg	4.8	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-39-3	Barium	61	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 17:11	EPA 6010
440-43-9	Cadmium	0.48 U	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-70-2	Calcium	250	mg/kg	24	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-47-3	Chromium	20	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-48-4	Cobalt	2.7	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-50-8	Copper	17	mg/kg	0.96	12/09/10 14:01	12/20/10 17:11	EPA 6010
7439-89-6	Iron	8300	mg/kg	9.6	12/09/10 14:01	12/20/10 17:11	EPA 6010
7439-92-1	Lead	24	mg/kg	1.9	12/09/10 14:01	12/20/10 17:11	EPA 6010
7439-95-4	Magnesium	240	mg/kg	24	12/09/10 14:01	12/20/10 17:11	EPA 6010
7439-96-5	Manganese	350	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7439-98-7	Molybdenum	37	mg/kg	0.96	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-02-0	Nickel	8.2	mg/kg	0.96	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-09-7	Potassium	210	mg/kg	96	12/09/10 14:01	12/20/10 17:11	EPA 6010
7782-49-2	Selenium	4.3 U	mg/kg	4.3	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-22-4	Silver	0.48 U	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-23-5	Sodium	96 U	mg/kg	96	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-24-6	Strontium	2.6	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-32-6	Titanium	98	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
440-62-2	Vanadium	18	mg/kg	0.48	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-65-5	Yttrium	2.7	mg/kg	0.29	12/09/10 14:01	12/20/10 17:11	EPA 6010
7440-66-6	Zinc	130	mg/kg	1.9	12/09/10 14:01	12/20/10 17:11	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC08</u>

Lab ID: <u>E104009-10</u>

Station ID: HERC08 Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-43-9	Cadmium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629
Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

Date Collected: 9/29/10 14:20

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	7100	mg/kg	9.6	12/09/10 14:01	12/20/10 17:19	EPA 6010
7440-36-0	Antimony	3.8 U	mg/kg	3.8	12/09/10 14:01	12/20/10 17:19	EPA 6010
7440-38-2	Arsenic	4.8 U	mg/kg	4.8	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-39-3	Barium	23	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-43-9	Cadmium	0.48 U	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-70-2	Calcium	530	mg/kg	24	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-47-3	Chromium	20	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-48-4	Cobalt	10	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
7440-50-8	Copper	110	mg/kg	0.96	12/09/10 14:01	12/20/10 17:19	EPA 6010
439-89-6	Iron	3500	mg/kg	9.6	12/09/10 14:01	12/20/10 17:19	EPA 6010
439-92-1	Lead	25	mg/kg	1.9	12/09/10 14:01	12/20/10 17:19	EPA 6010
439-95-4	Magnesium	160	mg/kg	24	12/09/10 14:01	12/20/10 17:19	EPA 6010
439-96-5	Manganese	39	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
439-98-7	Molybdenum	13	mg/kg	0.96	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-02-0	Nickel	150	mg/kg	0.96	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-09-7	Potassium	160	mg/kg	96	12/09/10 14:01	12/20/10 17:19	EPA 6010
782-49-2	Selenium	4.3 U	mg/kg	4.3	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-22-4	Silver	1.0	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-23-5	Sodium	150 J, QR-2	mg/kg	96	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-24-6	Strontium	4.6	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-32-6	Titanium	46	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-62-2	Vanadium	5.9	mg/kg	0.48	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-65-5	Yttrium	2.0	mg/kg	0.29	12/09/10 14:01	12/20/10 17:19	EPA 6010
440-66-6	Zinc	220	mg/kg	1.9	12/09/10 14:01	12/20/10 17:19	EPA 6010

1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC09-B</u> Station ID: <u>HERC09</u> Lab ID: <u>E104009-11</u>

Matrix: Waste

CAS Number	Analyle	Results Qualifiers	Units MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u> Lab ID: <u>E104009-12</u>

Station ID: <u>HERC10</u> Matrix: Waste

Date Collected: 9/29/10 14:15

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Meshod
7429-90-5	Aluminum	6400	mg/kg	9.6	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-36-0	Antimony	3.9 U	mg/kg	3.9	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-38-2	Arsenic	5.0	mg/kg	4.8	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-39-3	Barium	33	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 17:27	EPA 6010
440-43-9	Cadmium	0.48 U	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-70-2	Calcium	2800	mg/kg	24	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-47-3	Chromium	26	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-48-4	Cobalt	14	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-50-8	Copper	210	mg/kg	0.96	12/09/10 14:01	12/20/10	EPA 6010
7439-89-6	Iron	3200	mg/kg	9.6	12/09/10 14:01	12/20/10 17:27	EPA 6010
7439-92-1	Lead	23	mg/kg	1.9	12/09/10 14:01	12/20/10 17:27	EPA 6010
7439-95-4	Magnesium	200	mg/kg	24	12/09/10 14:01	12/20/10 17:27	EPA 6010
7439-96-5	Manganese	36	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7439-98-7	Molybdenum	6.4	mg/kg	0.96	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-02-0	Nickel	340	mg/kg	0.96	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-09-7	Potassium	220	mg/kg	96	12/09/10 14:01	12/20/10 17:27	EPA 6010
7782-49-2	Selenium	4.3 U	mg/kg	4.3	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-22-4	Silver	0.48 U	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-23-5	Sodium	210 J, QR-2	mg/kg	96	12/09/10 14:01	12/20/10 17:27	EPA 6010
440-24-6	Strontium	7.3	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-32-6	Titanium	61	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
7440-62-2	Vanadium	7.6	mg/kg	0.48	12/09/10 14:01	12/20/10 17:27	EPA 6010
440-65-5	Yttrium	1.2	mg/kg	0.29	12/09/10 14:01	12/20/10 17:27	EPA 6010
440-66-6	Zinc	570	mg/kg	1.9	12/09/10 14:01	12/20/10 17:27	EPA 6010

Page 27 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC10-B</u>

Lab ID: <u>E104009-12</u>

Station ID: <u>HERC10</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium;	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
7782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>
Station ID: <u>HERC11</u>

Lab ID: <u>E104009-13</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	7000	mg/kg	9.8	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-36-0	Antimony	3.9 U	mg/kg	3.9	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-38-2	Arsenic	4.9 U	mg/kg	4.9	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-39-3	Barium	23	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-41-7	Beryllium	0.29 U	mg/kg	0.29	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-43-9	Cadmium	0.49 U	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-70-2	Calcium	350	mg/kg	25	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-47-3	Chromium	25	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-48-4	Cobalt	10	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-50-8	Copper	93	mg/kg	0.98	12/09/10 14:01	12/20/10 17:34	EPA 6010
439-89-6	Iron	1900	mg/kg	9.8	12/09/10 14:01	12/20/10 17:34	EPA 6010
439-92-1	Lead	23	mg/kg	2.0	12/09/10 14:01	12/20/10 17:34	EPA 6010
439-95-4	Magnesium	170	mg/kg	25	12/09/10 14:01	12/20/10 17:34	EPA 6010
439-96-5	Manganese	14	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
439-98-7	Molybdenum	4.0	mg/kg	0.98	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-02-0	Nickel	140	mg/kg	0.98	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-09-7	Potassium	160	mg/kg	98	12/09/10 14:01	12/20/10 17:34	EPA 6010
782-49-2	Selenium	4.4 U	mg/kg	4.4	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-22-4	Silver	0.49 U	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-23-5	Sodium	180 J, QR-2	mg/kg	98	12/09/10 14:01	12/20/10 17:34	EPA 6010
7440-24-6	Strontium	4.2	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-28-0	Thallium	2.9 U	mg/kg	2.9	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-32-6	Titanium	52	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-62-2	Vanadium	7.2	mg/kg	0.49	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-65-5	Yttrium	1.2	mg/kg	0.29	12/09/10 14:01	12/20/10 17:34	EPA 6010
440-66-6	Zinc	270	mg/kg	2.0	12/09/10 14:01	12/20/10 17:34	EPA 6010

Page 29 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC11-B</u>
Station ID: <u>HERC11</u>

Lab ID: <u>E104009-13</u>

Matrix: Waste

Date Collected: 9/29/10 14:30

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic:	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Page 30 of 34 E104009 TCLPM TMTL FINAL

1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	6700	mg/kg	9.1	12/09/10 . 14:01	12/20/10 17:42	EPA 6010
7440-36-0	Antimony	3.7 U	mg/kg	3.7	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-38-2	Arsenic	4.6 U	mg/kg	4.6	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-39-3	Barium	30	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-41-7	Beryllium	0.27 U	mg/kg	0.27	12/09/10 14:01	12/20/10 17:42	EPA 6010
440-43-9	Cadmium	0.46 U	mg/kg	0.46	12/09/10	12/20/10	EPA 6010
7440-70-2	Calcium	1200	mg/kg	23	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-47-3	Chromium	18	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-48-4	Cobalt	13	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-50-8	Copper	110	mg/kg	0.91	12/09/10 14:01	12/20/10 17:42	EPA 6010
7439-89-6	Iron	4700	mg/kg	9.1	12/09/10 14:01	12/20/10 17:42	EPA 6010
7439-92-1	Lead	18	mg/kg	1.8	12/09/10 14:01	12/20/10 17:42	EPA 6010
7439-95-4	Magnesium	210	mg/kg	23	12/09/10 14:01	12/20/10 17:42	EPA 6010
7439-96-5	Manganese	36	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
7439-98-7	Molybdenum	2.8	mg/kg	0.91	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-02-0	Nickel	270	mg/kg	0.91	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-09-7	Potassium	170	mg/kg	91	12/09/10 14:01	12/20/10 17:42	EPA 6010
7782-49-2	Selenium	4.1 U	mg/kg	4.1	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-22-4	Silver	0.46 U	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-23-5	Sodium	240 J, QR-2	mg/kg	91	12/09/10 14:01	12/20/10 17:42	EPA 6010
7440-24-6	Strontium	8.5	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
440-28-0	Thallium	2.7 U	mg/kg	2.7	12/09/10 14:01	12/20/10 17:42	EPA 6010
440-32-6	Titanium	54	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
440-62-2	Vanadium	7.5	mg/kg	0.46	12/09/10 14:01	12/20/10 17:42	EPA 6010
440-65-5	Yttrium	1.6	mg/kg	0.27	12/09/10 14:01	12/20/10 17:42	EPA 6010
440-66-6	Zinc	370	mg/kg	1.8	12/09/10 14:01	12/20/10 17:42	EPA 6010

Page 31 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700

D.A.R.T. Id: 10-0629
Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC12-B</u> Station ID: <u>HERC12</u> Lab ID: <u>E104009-14</u>

Matrix: Waste

Date Collected: 9/29/10 14:50

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7440-38-2	Arsenic;	NA-5		1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-43-9	Cadmium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-47-3	Chromium:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
439-92-1	Lead:	NA-5		0.40	12/29/10 10:38	12/29/10 10:41	EPA 6010
782-49-2	Selenium:	NA-5		0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
440-22-4	Silver:	NA-5		0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010

Page 32 of 34 E104009 TCLPM TMTL FINAL 1/4/11 10:55

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

Total Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC13-B</u> Station ID: <u>HERC13</u> Lab ID: <u>E104009-15</u>

Matrix: Waste

CAS Number	Analyte	Results Qualifiers	Units	MRL	Prepared	Analyzed	Method
7429-90-5	Aluminum	6800	mg/kg	9.1	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-36-0	Antimony	3.7 U	mg/kg	3.7	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-38-2	Arsenic	5.6	mg/kg	4.6	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-39-3	Barium	45	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-41-7	Beryllium	0.27 U	mg/kg	0.27	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-43-9	Cadmium	0.46 U	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-70-2	Calcium	1700	mg/kg	23	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-47-3	Chromium	36	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-48-4	Cobalt	21	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
7440-50-8	Copper	210	mg/kg	0.91	12/09/10 14:01	12/20/10 17:50	EPA 6010
7439-89-6	Iron	3100	mg/kg	9.1	12/09/10 14:01	12/20/10 17:50	EPA 6010
7439-92-1	Lead	36	mg/kg	1.8	12/09/10 14:01	12/20/10 17:50	EPA 6010
7439-95-4	Magnesium	150	mg/kg	23	12/09/10 14:01	12/20/10 17:50	EPA 6010
7439-96-5	Manganese	15	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
439-98-7	Molybdenum	5.6	mg/kg	0.91	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-02-0	Nickel	490	mg/kg	0.91	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-09-7	Potassium	190	mg/kg	91	12/09/10 14:01	12/20/10 17:50	EPA 6010
782-49-2	Selenium	4.1 U	mg/kg	4.1	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-22-4	Silver	0.46 U	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-23-5	Sodium	230 J, QR-2	mg/kg	91	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-24-6	Strontium	8.9	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-28-0	Thallium	2.7 U	mg/kg	2.7	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-32-6	Titanium	76	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-62-2	Vanadium	9.0	mg/kg	0.46	12/09/10 14:01	12/20/10 17:50	EPA 6010
440-65-5	Yttrium	1.2	mg/kg	0.27	12/09/10	12/20/10 17:50	EPA 6010
440-66-6	Zinc	480	mg/kg	1.8	12/09/10 14:01	12/20/10 17:50	EPA 6010

Region 4 Science and Ecosystem Support Division 980 College Station Road, Athens, Georgia 30605-2700 D.A.R.T. Id: 10-0629

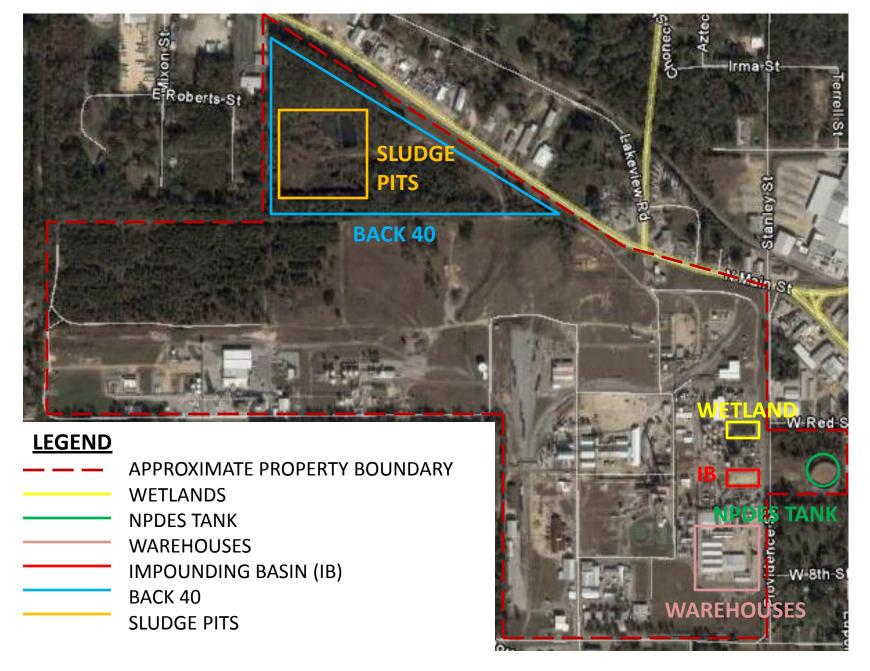
Project: 10-0629, Hercules Inc - Reported by Jenny Scifres

TCLP Metals

Project: 10-0629, Hercules Inc

Sample ID: <u>HERC13-B</u>

Station ID: <u>HERC13</u>


Lab ID: <u>E104009-15</u>

Matrix: Waste

Date Collected: 9/29/10 15:10

CAS Number	Analyse	Results Qualifiers Units	MRL	Proposed	Analyzed	Method
7440-38-2	Arsenic:	NA-5	1.0	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-39-3	Barium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-43-9	Cadmium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7440-47-3	Chromium:	NA-5	0.10	12/29/10 10:38	12/29/10 10:41	EPA 6010
7439-92-1	Lead:	NA-5	0.40	12/29/10 10:38	12/29/10	EPA 6010
782-49-2	Selenium:	NA-5	0.90	12/29/10 10:38	12/29/10 10:41	EPA 6010
/440-22-4	Silver:	NA-5	0.10	12/29/10 10:38	12/29/10	EPA 6010

END OF REPORT

HERCULES, INC., 613 West 7th Street, Hattiesburg, MS 39401

Photo #1 Photo #2

Photo #3 Photo #4

Photo #5 Photo #6

Photo #7 Photo #8

Photo #9 Photo #10

Photo #11 Photo #12

Photo #13 Photo #14

Photo #15 Photo #16

Photo #17 Photo #18

Photo #19 Photo #20

Photo #21 Photo #22

Photo #23 Photo #24

Photo #25 Photo #26

Photo #27 Photo #28

Photo #29 Photo #30

Photo #31 Photo #32